Setting Up a Splunk Testing
Environment Using Terraform GCP

By: Darren Fuller
Senior Splunk Consultant
Discovered Intelligence Inc.

https://discoveredintelligence.com

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 1 of 83

https://discoveredintelligence.com/

Table of Contents

Part 1: The SPIUNK Core HOSES........uuiiiiieiiiiieiiiennnetiennnesiessnnssssssssssssssssssssssssnans 3
Setting UP YOUN COMPULET c..coutiiiiiieierieeteriteste sttt sttt st sre et sae et satesbesssesaeenees 3
Logging into GCP USING ZCIOUA CLI ...ouiiiiiiiriiereeeereseseere e 4
Setting UP @ GCP ProOJECE ..couiiiieiiiieieeee ettt 5
TerraformM BaSICS ..c.iueuiriiieieieeeieeesee ettt sttt 8
Creating OUF FIFST VML . cui ettt ettt et st st sae b sane 9
Making INfrastructure ChanZESocooevireriniininenenesesese e 18

Part 2: The Splunk All-IN-0ne HOSt ...ttt seseeseeees 29
Creating a Splunk Enterprise Install SCript......coceverenenennneeereeeseseee e 29
BUIAING the MaiN.Ef ..ot 33
BUIlAING the OULPULS.ET ..o 38
PULEING 1T @ll tOZETNET .o 38
Log into the newly created AlO hOSt ... 46

Part 3: Splunk Deployment Server Installation & Configuration. 49
Creating a Deployment Server Install SCript.......cccoveveninnnnnnnenereneeee 49
AmMending the MaiN.tf. ... 54
AMeNding the OULPULS.EF..c.co.iiiieeee s 58
PULEING 1T @ll tOZETNET w.ceieieeeee e 58
Log into the newly created Splunk deployment Server.......c.cvvevienenienenienennens 59

Part 4: Installing Universal FOrwarders............ccccovveiiiciineniicnscneincsssssnssssssssssssses 63
Creating a forwarder inStall SCript.......covirnice s 63
Using the couNt Meta-argUMENTcoeviiviririeresesesese e 66
Using Variables to parameterize infrastructure........ccccovevevininenenneseseseseeee 69
UsiNg provisioners to @XeCULE ACiONSccvvviereerieneeieneeie st s 75
PULEING 1T @ll tOZEENET .. 77

Creating the full test environment.............ccoovvirineiiiieininninnsscnsneeresnesesssesssssenes 81
L =] o 1 U1 o OO OO T OO PP U PPN 83

“§ Discovered

nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 2 of 83

Part 1: The Splunk Core Hosts

Have you ever wished you had a fresh ephemeral Splunk instance that you could quickly spin up, run
some tests and then kill it, with maximum speed and minimum cloud costs?

| was working on a customer engagement recently that required me to test a custom developed Splunk
app on a large list of Splunk Universal Forwarder versions and OS distributions (75 distinct host types in
total) that if spun up manually on a cloud provider would take a long time to set up and tear down, would
be subject to potentially costly “fat-fingering” user errors and would be costly if left up longer than
necessary.

Enter Hashi Terraform to the rescue. The industry-leading infrastructure-as-code tool makes the
standup, setup and teardown of cloud compute nodes simple, speedy and repeatable so that an
environment can be built, a complete set of tests can be run, results received and the test nodes
destroyed in minutes rather than hours.

In this whitepaper, | show how | set up my computer and built the Search Head and Deployment server,
as well as how | set up the many Splunk Universal Forwarders to satisfy the test plan.

Setting up your computer

To set up your local host to be able to complete the steps outlined in these instructions you need to
install the gcloud and terraform command line tools. These are relatively straightforward and well
documented

Installing GCloud

The GCloud command line tools are available for Windows, MacOS and Linux and include all the
commands needed to create, update and destroy Google Cloud instances from your local machine.

Instructions on how to setup the gcloud cli on your preferred host OS can be found here:
https://cloud.google.com/sdk/docs/install

Note: To use the gcloud CLI tools you need to have a Google Cloud Platform account. A free trial with $300
credit can be utilized by new GCP customers by visiting: https://cloud.google.com/free

T T
u

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 3 of 83

https://cloud.google.com/sdk/docs/install
https://cloud.google.com/free

Installing Terraform

Similar to the GCloud tools, Terraform is available for all major platforms. To install Terraform, follow

the installation instructions on the Hashicorp Terraform website at :
https://developer.hashicorp.com/terraform/downloads

The non-cloud version of terraform is free to download and use.

Logging into GCP using gcloud CLI

Now that we have all the tools setup, let's log in to GCP on your host and test the GCP command
line tools.

Open up the terminal and run the following command:

gcloud auth login

This will open your browser to a google authentication window. Select the Google user that you
set up (or had set up for you) for GCP

G sign in with Google

D

Choose an account

to continue to Google Cloud SDK
. HEE =
|
: u u
u u
u

To continue, Google will share your name, email address,
language preference, and profile picture with Google Cloud
SDK

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 4 of 83

https://developer.hashicorp.com/terraform/downloads

Then you will be shown a permissions request saying you allow the gcloud SDK to manage your
instances on the platform. Click ‘Allow’ to continue. This should open a “You are now
authenticated” page in the browser

GO gle C|0ud Overview Solutions Products Pricing Resources
Cloud SDK Overview Guides Reference Support Resources
= Filter
Cloud SOK > Documentation > Guides Was this helpful? (7 Gl
geloud CLI . .
Product overviow You are now authenticated with the gcloud Send feadback
geloud CLI overview |
geloud CLI cheat sheet CL! o
Quickstart The authentication flow has completed successfully. You may close this window, or check out the resources below.
Install the Google Cloud CLI
How-to guides Information about command-line tools and client libraries
All how-to guides
> Installing the geloud CLI To learn more about Google Cloud CLI commands, see the geloud CLI guide.
» Setting up the geloud GLI
............................ Th laarm mara ahaii tha Aammaandlins $anls far Ann Canina PARRBA CRAIRA PlALA CLarana DinfUians Plaid ONL And

And should show a similar logged in message on the terminal

You are now logged in as [HE HENTE HENEE W)

Setting up a GCP Project

Let's talk about projects in GCP for a second. In the context of Google Cloud Platform (GCP),
"projects" are the fundamental organizational unit used to manage and control resources. A
project is essentially a container for services and resources within GCP. It acts as an isolation
boundary that separates and organizes cloud resources, making it easier to manage, monitor, and
control access to these resources.

If you are part of an organization, you may already be assigned a project which would have been
selected when you logged in. You'd have seen something like this:

You are now logged in as [(I ENEE W : n].

Your current project is [¢wm o mfSey juesr ‘'m~"" w]. You can change this setting by running:
$ gcloud config set project PROJECT_ID

“§ Discovered
nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 5 of 83

If this is true, you may not need to create a project at all. Check with your company policy if testing
under this default project is allowed / suggested or should a new project be created for Splunk
testing.

To create a new project you would use the gcloud projects create command.

The syntax for this command is:

gcloud projects create [PROJECT ID] [--enable-cloud-apis] [--folder=FOLDER ID] [--
labels=[KEY=VALUE,..]] [--name=NAME] [--organization=ORGANIZATION ID] [--set-as-
default]

[PROJECT ID]:

This is the unique identifier for the project you want to create. It should be a
string of lowercase letters, numbers, and hyphens. This option is required.

--enable-cloud-apis:
When specified, this flag enables the Cloud APIs for the newly created project.
Cloud APIs are required to use various GCP services, so enabling them
ensures that the project can start using GCP resources right away. This is
default and doesn't need to be set unless the organization default is to have
these disabled

-—-folder=FOLDER ID:
This option is used to place the newly created project under a specific folder
in the GCP resource hierarchy. Folders are used for organizational purposes
and help group projects together based on your organizational structure.
The folder_id is numeric (ie: 57174735903)

--labels=[KEY=VALUE, ...]:
Labels are key-value pairs that you can use to add metadata to your projects.
They provide a way to categorize and organize projects based on your own
custom criteria. Separate labels with commas.

—-—name=NAME :
With this option, you can specify a friendly name for the project. The name
does not need to be unique and is used as a human-readable identifier for
the project. If you do not supply a name, the name is set as the PROJECT_ID

-—-organization=ORGANIZATION ID:

“§ Discovered

nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 6 of 83

If your GCP account is associated with an organization, you can use this
option to create the project under a specific organization. An organization
helps manage access, billing, and policies across all projects under it. The
organization_id is a string of numbers (ie: 655473194031)

--set-as-default:
When this flag is used, the newly created project becomes the default project
for the gcloud command-line tool. This means that if you run other gcloud
commands without specifying the project, it will use the project created here.

The most basic command to create a project with id terraformblogpost would be:

gcloud projects create terraformblogpost

If you get a message like this:

gcloud projects create terraformblogpost
Create in progress for [https://cloudresourcemanager.googleapis.com/vl/projects/terraformblogpost].

Waiting for [operations/cp.6@89635452610622181] to finish...failed.

ERROR: (gcloud.projects.create) Operation [cp.6089635452610622181] failed: 7: Permission 'resourcemanager.projects.create’ denied on parent resource 'organizations, Wl mE .

You will need to check with your organization to see if there is a folder or specific location that you
can create projectsin. For instance... if in the console you go to

https://console.cloud.google.com/compute

Click “Select a Project” at the top of the screen

= Go g|€ Cloud Select a project ¥
EE:]E Compute Engine VM instances
Virtual machines ~

[[To view this page, select a project.

In there, you find everything you need to create a new project including organization_id and (if
applicable) folder_id.

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved

Page 7 of 83

https://console.cloud.google.com/compute

Select from no orcANIZATION + NEW PROJECT :

Q, search projects and folders ‘

@rganizationtidl—
RECENT STARRED ALL
Hame \ @rganization) D /
ST
r I H
S B \
\\\\k '\u
~ Foldery A
- folders id|

CANCEL OPEN
(you can also create a new project from within the GCP console)

Terraform Basics

Now that your computer is set up and you have a GCP project, let's talk about terraform files.

A terraform project is a set of configuration files in a folder on your machine, known as
Terraform files, which define the desired state of your infrastructure and the necessary
resources to achieve that state. Most terraform files have a .tf extension.

Looking at the anatomy of a basic terraform project, the tree would look like this:

my-terraform-project/

I— main.tf

|— variables.tf

“§ Discovered
aiin Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 8 of 83

|-— outputs.tf

|— provider.tf

I— terraform.tfvars

Files:
my-terraform-project/: This is the root directory of your Terraform project.

main.tf: The primary configuration file for your infrastructure. It defines resources,
variables, and other core elements.

variables.tf: This file is used to declare input variables that can be used to parameterize
your infrastructure configuration.

outputs.tf: You define output values in this file that provide information about the resources
created in your configuration.

provider.tf. Contains provider configurations, specifying which cloud or infrastructure
provider(s) you're using.

terraform.tfvars: Input variable values are often stored in this file. It's where you set values
for variables declared in variables.tf.

Creating Our First VM...

Now in the simplest Terraform project, all that is required is the main.tf file. Let's create a
main.tf file and create our first VM.

main.tf

provider "google" {
project = "terraform-demo-2024"
region = "us-centrall"

}

resource "google compute instance
name = "myfirstvm"
machine type = "e2-micro"
zone = "us-centrall-a"
boot disk {
initialize params {
image = "debian-cloud/debian-10"

example vm

“"§) Discovered
nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 9 of 83

}

}

network interface {
network = "default"

}

Looking at that file section by section:

The "provider" block tells terraform what
cloud provider or infrastructure platform
that Terraform will interact with. It specifies
the necessary configuration details required

provider "google" { to connect to the provider and manage the
project = "terraform-demo-2024"
resources.

region = "us-centrall"

In this case we are using the google
provider, connecting to the
"terraformdemo" project and creating
objects in the us-central1 region.

Start of the resource block that will create
our VM. Aresource block sectionin a
Terraform file defines a specific
infrastructure resource to be managed.
resource "google compute instance" "example vm"

{ We are creating a
"google_compute_instance" whose ID is
"example_vm". This id will be used to refer
to this resource using terraform commands
later on.

The rest of the resource block defines
configuration details for this resource.

Each provider and resource type has it's
own set of configurations that can be set as
well as what configs are mandatory and
what are optional .

name = "myfirstvm"

The name parameter sets the hostname for

EEEE - || . 1 -.- -
"W Discovered n
nite Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 10 of 83

machine type = "e2-micro"

zone = "us-centrall-a"

boot disk {
initialize params {
image = "debian-cloud/debian-10"

}

network interface ({
network = "default"

}

the machine

The machine_type determines the machine
type for the host. For a list of valid
machine types in GCP compute instances,
go here

Zone represents the Zone within the region
set in the provider block.

The image setting tells GCP which operating
system to install on the new VM. For a full
list of GCP images available, you can run:
gcloud compute images list

This tells GCP that the instance should use
the "default" network for the project.

Now that we have the main.tf file created, to create the VM you would need to run the

following commands:

terraform init

Initializes a new or existing Terraform working directory. It downloads the
necessary provider plugins and sets up the backend configuration.

terraform plan

Creates an execution plan that shows what actions Terraform will take to reach the
desired infrastructure state. It compares the current state with the desired state
defined in your Terraform configuration files.

terraform apply

Applies the changes required to reach the desired state defined in your Terraform
configuration files. It creates, modifies, or deletes resources as necessary. It
prompts for confirmation before making any changes.

Running those in succession, here is what we see:

i Discovered

nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 11 of 83

https://cloud.google.com/compute/docs/general-purpose-machines

> terraform init
Initializing the backend...

Initializing provider plugins...

- Finding latest version of hashicorp/google...

- Installing hashicorp/google v5.16.0...

- Installed hashicorp/google v5.16.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

As you can see, the init command downloaded and installed the hashicorp/google plugin and
created a lock file. The lock file is used by Terraform to lock the versions of the provider
plugins being used in a particular Terraform configuration. It ensures that the same versions
of the provider plugins are used consistently across different environments and by different
users, preventing any unexpected changes in behaviour due to version differences. This file
is automatically generated and managed by Terraform when you run ‘terraform init" or
“terraform get’ commands.

> terraform plan

Terraform used the selected providers to generate the following execution plan. Resource
actions are indicated with the
following symbols:

+ create

Terraform will perform the following actions:

google compute instance.example vm will be created
+ resource "google compute instance" "example vm" {
+ can_ip forward = false
cpu_platform = (known after apply)
current status = (known after apply)
deletion protection false
effective labels (known after apply)
guest accelerator (known after apply)
id (known after apply)
instance id = (known after apply)

I e O
u

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 12 of 83

label fingerprint = (known after apply)
machine type "e2-micro"

metadata fingerprint (known after apply)
min cpu platform = (known after apply)
name "myfirstvm"

project "terraform-demo-2024"
self link (known after apply)
tags fingerprint = (known after apply)
terraform labels (known after apply)
zone "us-centrall-a"

+ 4+ + + + A+ + A+ +

+

boot disk {
+ auto delete = true
device name (known after apply)
disk encryption key sha256 (known after apply)
kms key self link (known after apply)
julelelS "READ WRITE"
source = (known after apply)

initialize params {
+ image "debian-cloud/debian-10"
+ labels (known after apply)
t provisioned iops known after apply
+ provisioned throughput known after apply
t size known after apply
+

(
(
(
type (known after apply

)
)
)
)

}

t network interface ({

+ internal ipvé6 prefix length = (known after apply
ipvé_access_type = (known after apply
ipv6 address (known after apply
name (known after apply
network "default"
network ip known after apply
stack type known after apply
subnetwork known after apply
subnetwork project known after apply

)
)
)
)

4
+
4
+
+
+
+
+

()
()
()
()

}

Plan: 1 to add, 0 to change, 0 to destroy.

Note: You didn't use the -out option to save this plan, so Terraform can't guarantee to
take exactly these actions if
you run "terraform apply" now.

Running the terraform plan, we get the execution plan for what will happen when this
terraform project is applied. As you can see there is a single google_compute_instance
being created with iD example_vm and host name myfirstvm.

. || . 1 -.- || || ||
Discovered .
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 13 of 83

> terraform apply

Terraform used the selected providers to generate the following execution plan. Resource
actions are indicated with the
following symbols:

+ create

Terraform will perform the following actions:

google compute instance.example vm will be created

+ resource "google compute instance" "example vm" {
+ can_ip forward = false

cpu platform = (known after apply)

current status (known after apply)

deletion protection false

effective labels (known after

guest accelerator (known after

id = (known after

instance_ id (known after

label fingerprint (known after

machine type "e2-micro"

metadata fingerprint (known after

min cpu platform = (known after

name = "myfirstvm"

project = "terraform-demo-2024"

self link (known after apply)

tags fingerprint (known after apply)

terraform labels (known after apply)

zone = "us-centrall-a"

R T T T T T e

+

boot disk {
t auto delete = true
+ device name (known after apply)
t disk encryption key sha256 (known after apply)
+ kms_key self link (known after apply)
+ mode = "READ WRITE"
+ source = (known after apply)

+ initialize params {

+ image "debian-cloud/debian-10"
labels after apply)

provisioned iops after apply

provisioned throughput after apply

size = after apply

type after apply

)
)
)
)

}

+ network interface {

+ internal ipv6 prefix length = (known after
ipv6_access_ type = (known after
ipv6_address (known after
name = (known after
network = "default"
network ip = (known after
stack type (known after
subnetwork (known after
subnetwork project = (known after

+ o+ o+ o+

. || . 1 -.- || || ||
Discovered .
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 14 of 83

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.

Only 'yes' will be accepted to approve.
Enter a value: yes

google compute instance.example vm: Creating...

google compute instance.example vm: Still creating... [10s elapsed]

google compute instance.example vm: Still creating... [20s elapsed]

google compute instance.example vm: Creation complete after 24s [id=projects/terraform-
demo-2024/zones/us-centrall-a/instances/myfirstvm]

1

Running terraform apply reran the plan, asked for confirmation that | would like to proceed
and then created the VM in 24 seconds.

Looking in my GCP Console Compute Engine page for my project, i can see the new VM in
the list

VM instances

= Filter Enter property name or value
D Status Name Zone Recommendations In use by nternal IP External IP Connect

D Q myfirstvm us-centrall-a 10.128.0.2 (nic0) SSH ~

To SSH to this machine, i can use the gcloud binaries

gcloud compute ssh "myfirstvm" --project "terraform-demo-2024"

gcloud compute ssh "myfirstvm" --project "terraform-demo-2024"
External IP address was not found; defaulting to using IAP tunneling.
WARNING:

To increase the performance of the tunnel, consider installing NumPy. For instructions,
please see https://cloud.google.com/iap/docs/using-tcp-
forwarding#increasing the tcp upload bandwidth

Linux myfirstvm 4.19.0-26-cloud-amd64 #1 SMP Debian 4.19.304-1 (2024-01-09) x86 64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 15 of 83

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Fri Feb 16 20:13:43 2024 from 35.235.244.33
darren@myfirstvm:~$

Now that | am finished with that first VM, | can run the following command from the same
directory as the main.tf file: terraform destroy. And all resources in the main.tf file are
deleted.

> terraform destroy
google compute instance.example vm: Refreshing state... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm]

Terraform used the selected providers to generate the following execution plan. Resource
actions are indicated with the
following symbols:

- destroy

Terraform will perform the following actions:

google compute instance.example vm will be
resource "google compute instance" "example vm" {
can_ip forward = false -> null
cpu platform "Intel Broadwell" -> null
current status "RUNNING" -> null
deletion protection false -> null
effective labels {} => null
enable display = false -> null
guest accelerator = [] -> null
id = "projects/terraform-demo-2024/zones/us-centrall-
a/instances/myfirstvm" -> null
instance_ id = "6433867197304668466" -> null
label fingerprint = "42WmSpB8rSM=" -> null
labels = {} => null
machine type "e2-micro" -> null
metadata {} => null
metadata fingerprint "aXmOUjcs5kU=" -> null
name = "myfirstvm" -> null
project = "terraform-demo-2024" -> null
resource policies = [] -> null
self link = "https://www.googleapis.com/compute/vl/projects/terraform-
demo-2024/zones/us-centrall-a/instances/myfirstvm" -> null
tags =[] -> null
tags_ fingerprint "42WmSpB8rSM=" -> null
terraform labels {} -> null
zone = "us-centrall-a" -> null

boot disk {
auto delete = true -> null
device name "persistent-disk-0" -> null
mode = "READ WRITE" -> null
source = "https://www.googleapis.com/compute/vl/projects/terraform-demo—

I e O
u

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 16 of 83

2024 /zones/us-centrall-a/disks/myfirstvm" -> null

initialize params {

enable confidential compute = false -> null

image =
"https://www.googleapis.com/compute/vl/projects/debian-cloud/global/images/debian-10-
buster-v20240213" -> null

labels = {} -> null

provisioned iops 0 -> null

provisioned throughput 0 -> null

resource manager tags {} -> null

ShAS = 10 -> null

type = "pd-standard" -> null

}

network interface {

internal ipvé6 prefix length = 0 -> null

name = "nicO" -> null

network =
"https://www.googleapis.com/compute/vl/projects/terraform-demo-
2024/global/networks/default" -> null

network ip "10.128.0.2" -> null

queue count = 0 -> null

stack type = "IPV4 ONLY" -> null

subnetwork =
"https://www.googleapis.com/compute/vl/projects/terraform-demo-2024/regions/us—
centrall/subnetworks/default"™ -> null

subnetwork project = "terraform-demo-2024" -> null

}

scheduling {
automatic restart = true -> null
min node cpus 0 -> null
on_host maintenance "MIGRATE" -> null
preemptible = false -> null
provisioning model = "STANDARD" -> null

}

shielded instance config ({
enable integrity monitoring = true -> null
enable secure boot false -> null
enable vtpm = true -> null

}
Plan: 0 to add, 0 to change, 1 to destroy.

Do you really want to destroy all resources?
Terraform will destroy all your managed infrastructure, as shown above.
There is no undo. Only 'yes' will be accepted to confirm.

Enter a value: yes

google compute instance.example vm: Destroying... [id=projects/terraform-demo-
2024/zones/us-centrall-a/instances/myfirstvm]

google compute instance.example vm: Still destroying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm, 10s elapsed]

google compute instance.example vm: Still destroying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm, 20s elapsed]

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

I e O
u

Page 17 of 83

google compute instance.example vm: Destruction complete after 21s

y complete! Resources: 1 destroyed.

The destroy command shows an execution plan, in this case destroying 1 host. | confirmed

that this was my intention by typing "yes" and the host and all of its resources, drives, ips etc
were completely destroyed in 21s.

Making Infrastructure Changes

Taking the same main.tf file,| am going to show you how easy it is to make changes to the
infrastructure being managed by terraform configuration files.

Let's remember what the main.tf file looks like so far:

main.tf

provider "google" {
project = "terraform-demo-2024"
region = "us-centrall"

}

resource "google compute instance" "example vm"
name = "myfirstvm"
machine type = "eZ-micro"
zone = "us-centrall-a"
boot disk {
initialize params {
image = "debian-cloud/debian-10"
}
}
network interface {
network = "default"

}

| created the myfirstvm host using "terraform apply"

Now... what to do if a change is required? Whatif | want to change the hostname, or machine
type..etc.

Changes come in two flavours: destructive and non-destructive. A non-destructive change
can be applied on the host in place. For google_compute_instance resources examples of
non-destructive changes would include changes to the machine type, updating metadata or

“"§) Discovered

nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 18 of 83

labels, or modifying network settings. Destructive change examples would include changing
the host image or changing the zone.

Let's try a change out. | have updated the main.tf file to change the machine_type from e2-
micro to e2-small.

When | run terraform plan, | get the following output:

> terraform plan
google compute instance.example vm: Refreshing state... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm]

Terraform used the selected providers to generate the following execution plan. Resource
actions are indicated with the following symbols:
~ update in-place

Terraform will perform the following actions:

google compute instance.example vm will be updated in-place
~ resource "google compute instance" "example vm" {
id = "projects/terraform-demo-2024/zones/us-centrall-
a/instances/myfirstvm"
~ machine type "e2-micro" -> "e2-small"
name = "myfirstvm"
tags = [
(18 unchanged attributes hidden)

(4 unchanged blocks hidden)
}

Plan: 0 to add, 1 to change, 0 to destroy.

The plan shows the proposed change on the line marked with a tilde (~) and the plan line at
the bottom shows that we are going to change 1 resource (as expected) .

Running terraform apply shows an issue however...

> terraform apply
google compute instance.example vm: Refreshing state... [id=projects/terraform-demo-
2024/zones/us-centrall-a/instances/myfirstvm]

Terraform used the selected providers to generate the following execution plan. Resource
actions are indicated with the following symbols:
~ update in-place

Terraform will perform the following actions:

google compute instance.example vm will be updated in-place

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 19 of 83

~ resource "google compute instance" "example vm" {
id = "projects/terraform-demo-2024/zones/us-centrall-
a/instances/myfirstvm"
~ machine type = "e2-micro" -> "e2-small"
name = "myfirstvm"
tags =[]
(18 unchanged attributes hidden)

(4 unchanged blocks hidden)

}
Plan: 0 to add, 1 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

google compute instance.example vm: Modifying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm]

|

| : Changing the machine type, min cpu platform, service account, enable display,
shielded instance config, scheduling.node affinities or
network_interface.[#d].(network/subnetwork/subnetwork_project) or

advanced machine features on a started instance requires stopping it. To acknowledge this,
please set allow stopping for update = true in your config. You can also stop it by
setting desired status = "TERMINATED", but the instance will not be restarted after the
update.

with google compute instance.example vm,
on main.tf line 8, in resource "google compute instance" "example vm":
8: resource "google compute instance" "example vm" {

Changing the machine type requires a new configuration added to our resource:
allow_stopping_for_update = true. Let's add that into our main.tf file:

main.tf

provider "google" {
project = "terraform-demo-2024"
region = "us-centrall"

resource "google compute instance" "example vm" {
name = "myfirstvm"
machine type = "e2-small"
zone = "us-centrall-a"
boot disk {
initialize params {
image = "debian-cloud/debian-10"

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 20 of 83

network interface ({
network = "default"

}
allow stopping for update = true

Running terraform apply again and the change is completed.

> terraform apply
google compute instance.example vm: Refreshing state... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm]

Terraform used the selected providers to generate the following execution plan. Resource
actions are indicated with the following symbols:
~ update in-place

Terraform will perform the following actions:

google compute instance.example vm will be updated in-place
~ resource "google compute instance" "example vm" {
+ allow stopping for update = true
id = "projects/terraform-demo-2024/zones/us-centrall-
a/instances/myfirstvm"
~ machine type "e2-micro" -> "e2-small"
name = "myfirstvm"
tags =[]
(18 unchanged attributes hidden)

(4 unchanged blocks hidden)
}

Plan: 0 to add, 1 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

google compute instance.example vm: Modifying... [id=projects/terraform-demo-

2024 /zones/us-centrall-a/instances/myfirstvm]

google compute instance.example vm: Still modifying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm, 10s elapsed]

google compute instance.example vm: Still modifying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm, 20s elapsed]

google compute instance.example vm: Still modifying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm, 30s elapsed]

google compute instance.example vm: Still modifying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm, 40s elapsed]

google compute instance.example vm: Modifications complete after 44s
[id=projects/terraform-demo-2024/zones/us-centrall-a/instances/myfirstvm]

\ \

Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

B [mpE
I

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 21 of 83

And we can see on the host details page that the change was completed successfully:

Basic information

Name myfirstvm
Instance Id 1634316693715184915
Description Mone
Type Instance
Status & Running
Creation time Feb 16, 2024, 4:30:36 PM UTC-05:00
Zone us-centrall-a
Instance template None
In use by Mone
Reservations Automatically choose (default)
Labels None
Tags @ -
’
Deletion protection Disabled
Confidential VM service @ Disabled
Preserved state size 0GB

Machine configuration

(Machine type eZ-small J
CPU platform Intel Broadwell
Minimum CPU platform Mone
Architecture xB6/64

vCPUs to core ratio @ -

Custom visible cores @
Display device Disabled

Enable to use screen capturing and recording tools
GPUs Mone

Resource policies

If we had opted instead to complete a destructive change the workflow would look like this:

Let's change the host image for the myfirstvm box. Currently we are using Ubuntu as the
host image, but you really want RedHat Enterprise Linux for the host instead. To accomplish
this, first you need to get the name of the image for RHEL. You can do that using: gcloud
compute images list

“§ Discovered
aiin Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 22 of 83

$ gcloud compute images list | grep rhel

rhel-7-v20240213

READY

rhel-8-v20240213

READY
rhel-9-arm64-v20240213
READY

rhel-9-v20240213

READY
rhel-7-9-sap-v20240213
READY
rhel-8-2-sap-v20240213
READY
rhel-8-4-sap-v20240214
READY
rhel-8-6-sap-v20240213
READY
rhel-8-8-sap-v20240213
READY
rhel-9-0-sap-v20240213
READY
rhel-9-2-sap-v20240213
READY

rhel-cloud

rhel-cloud

rhel-cloud

rhel-cloud

rhel-sap-cloud

rhel-sap-cloud

rhel-sap-cloud

rhel-sap-cloud

rhel-sap-cloud

rhel-sap-cloud

rhel-sap-cloud

rhel-7

rhel-8

rhel-9-armoc4

rhel-9

rhel-7-9-sap-ha

rhel-8-2-sap-ha

rhel-8-4-sap-ha

rhel-8-6-sap-ha

rhel-8-8-sap-ha

rhel-9-0-sap-ha

rhel-9-2-sap-ha

We will use the rhel-9-v20240213 image which has project rhel-cloud and family rhel-9. Now

edit your main.tf file to replace the image with those new values:

$ cat ./main.tf

provider "google" {
project = "terraform-demo-2024"
region = "us-centrall"

resource "google compute instance" "example vm"

name = "myfirstvm"
machine type = "e2-micro"
zone = "us-centrall-a"

boot disk {
initialize params {

image = "rhel-cloud/rhel-9"

}
network interface {
network = "default"

{

When | run terraform plan this time, instead of seeing 1 to change, we get 1 to destroy and

1 to add:

Discovered
Intelligence

T T
u

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 23 of 83

$ terraform plan
google compute instance.example vm: Refreshing state...
2024 /zones/us-centrall-a/instances/myfirstvm]

[id=projects/terraform-demo-

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:
-/+ destroy and then create replacement

Terraform will perform the following actions:

google compute instance.example vm must be replaced

-/+ resource "google compute instance" "example vm" {
~ cpu_platform = "Intel Broadwell" -> (known after apply)
~ current status = "RUNNING" -> (known after apply)
~ effective_labels = {} -> (known after apply)
- enable display = false -> null
~ guest accelerator = [] -> (known after apply)
~ id = "projects/terraform-demo-2024/zones/us-centrall-

(known after apply)
= "4441852230022631571" ->

a/instances/myfirstvm" ->

~ instance id (known after apply)

~ label fingerprint = "42WmSpB8rSM=" -> (known after apply)
- labels = {} -> null
- metadata = {} -> null
~ metadata fingerprint = "aXmOUjcs5kU=" -> (known after apply)

+ min cpu platform = (known after apply)
name = "myfirstvm"
- resource policies = [] -> null
~ self link =
"https://www.googleapis.com/compute/vl/projects/terraform-demo-2024/zones/us-centrall-

a/instances/myfirstvm" -> (known after apply)

- tags =[] -> null
~ tags_fingerprint = "42WmSpB8rSM=" -> (known after apply)
~ terraform labels = {} -> (known after apply)

(5 unchanged attributes hidden)

~ boot disk {
~ device name
+ disk encryption key sha256
+ kms_key self link

"persistent-disk-0" ->
(known after apply)
(known after apply)

(known after apply)

~ source =
"https://www.googleapis.com/compute/vl/projects/terraform-demo-2024/zones/us-centrall-
a/disks/myfirstvm" -> (known after apply)

(2 unchanged attributes hidden)

~ initialize params {
- enable confidential compute = false -> null
~ image =
"https://www.googleapis.com/compute/vl/projects/debian-cloud/global/images/debian-10-
buster-v20240213" -> "rhel-cloud/rhel-9" # forces replacement
~ labels {} —-> (known after apply)

~ provisioned iops =0 ->

~ provisioned throughput

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

(known after apply)
(known after apply)

T T
u

Page 24 of 83

{} -> null
10 -> (known after apply)
~ type = "pd-standard" -> (known after apply)

- resource manager tags

~ size

~ network interface {

~ internal ipv6 prefix length 0 -> (known after apply)

+ ipv6_access type = (known after apply)

+ ipv6_address = (known after apply)

~ name = "nicO" -> (known after apply)
~ network =

"https://www.googleapis.com/compute/vl/projects/terraform-demo—-
2024/global/networks/default" -> "default"
~ network ip "10.128.0.5" -> (known after apply)
- queue_ count = 0 -> null
~ stack type = "IPV4 ONLY" -> (known after apply)
~ subnetwork =

"https://www.googleapis.com/compute/vl/projects/terraform-demo-2024/regions/us-
centrall/subnetworks/default" -> (known after apply)
~ subnetwork project = "terraform-demo-2024" -> (known after apply)

- scheduling {

- automatic restart = true -> null

- min node cpus =0 -> null

- on_host maintenance = "MIGRATE" -> null
- preemptible = false -> null

- provisioning model = "STANDARD" -> null

- shielded instance config {

- enable integrity monitoring = true -> null
false -> null
true -> null

- enable secure boot

- enable vtpm

Plan: 1 to add, 0 to change, 1 to destroy.

Running terraform apply now will destroy the old host and create a new one running rhel 9

$ terraform apply
google compute instance.example vm: Refreshing state... [id=projects/terraform-demo-
2024/zones/us-centrall-a/instances/myfirstvm]

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:

-/+ destroy and then create replacement

Terraform will perform the following actions:

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 25 of 83

google compute instance.example vm must be replaced

-/+ resource "google compute instance" "example vm" ({

~ cpu_platform = "Intel Broadwell" -> (known after apply)

~ current status = "RUNNING" -> (known after apply)

~ effective labels = {} -> (known after apply)

- enable display = false -> null

~ guest accelerator = [] -> (known after apply)

~ id = "projects/terraform-demo-2024/zones/us-centrall-
a/instances/myfirstvm" -> (known after apply)

~ instance_ id = "4441852230022631571" -> (known after apply)

~ label fingerprint = "42WmSpB8rSM=" -> (known after apply)

- labels = {} -> null

- metadata = {} -> null

~ metadata fingerprint = "aXmOUjcs5kU=" -> (known after apply)

+ min cpu platform = (known after apply)

name = "myfirstvm"
- resource policies =[] -> null

~ self link =
"https://www.googleapis.com/compute/vl/projects/terraform-demo-2024/zones/us-centrall-
a/instances/myfirstvm" -> (known after apply)

- tags = [] -> null
~ tags_fingerprint = "42WmSpB8rSM=" -> (known after apply)
~ terraform labels = {} -> (known after apply)

(5 unchanged attributes hidden)

~ boot disk {
~ device name = "persistent-disk-0" -> (known after apply)

+ disk encryption key sha256 (known after apply)

+ kms_key self link = (known after apply)

~ source =
"https://www.googleapis.com/compute/vl/projects/terraform-demo-2024/zones/us-centrall-
a/disks/myfirstvm" -> (known after apply)

(2 unchanged attributes hidden)

~ initialize params {
- enable confidential compute = false -> null
~ image =
"https://www.googleapis.com/compute/vl/projects/debian-cloud/global/images/debian-10—-
buster-v20240213" -> "rhel-cloud/rhel-9" # forces replacement

~ labels = {} -> (known after apply)

~ provisioned iops = 0 -> (known after apply)

~ provisioned throughput = 0 -> (known after apply)

- resource manager_ tags = {} —-> null

~ size = 10 -> (known after apply)

~ type = "pd-standard" -> (known after apply)

~ network interface {
~ internal ipv6 prefix length = 0 -> (known after apply)

+ ipv6_access_ type = (known after apply)
+ ipvé6_address = (known after apply)
~ name = "nicO" -> (known after apply)

T T
u

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 26 of 83

~ network =
"https://www.googleapis.com/compute/vl/projects/terraform-demo-
2024/global/networks/default" -> "default"

~ network ip

"10.128.0.5" -> (known after apply)

- queue_ count = 0 -> null
~ stack type = "IPV4 ONLY" -> (known after apply)
~ subnetwork =

"https://www.googleapis.com/compute/vl/projects/terraform-demo-2024/regions/us-
centrall/subnetworks/default" -> (known after apply)
~ subnetwork project = "terraform-demo-2024" -> (known after apply)

- scheduling {

- automatic restart = true -> null

- min node cpus = 0 -> null

- on_host maintenance = "MIGRATE" -> null
- preemptible = false -> null

- provisioning model = "STANDARD" -> null

- shielded instance config {
- enable integrity monitoring = true -> null
- enable secure boot false -> null
- enable vtpm = true -> null

Plan: 1 to add, 0 to change, 1 to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.

Only 'yes' will be accepted to approve.

Enter a value: yes

google compute instance.example vm: Destroying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm]
google compute instance.example vm: Still destroying... [id=projects/terraform-demo-

2024 /zones/us-centrall-a/instances/myfirstvm, 10s elapsed]

google compute instance.example vm: Still destroying... [id=projects/terraform-demo-
2024 /zones/us-centrall-a/instances/myfirstvm, 20s elapsed]

google compute instance.example vm: Destruction complete after 21s

google compute instance.example vm: Creating...

google compute instance.example vm: Still creating... [10s elapsed]

google compute instance.example vm: Creation complete after 13s
[id=projects/terraform-demo-2024/zones/us-centrall-a/instances/myfirstvm]

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

Now the boot disk is shown as RHEL 9 for the myfirstvm host

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 27 of 83

Boot disk

Name 4 Image Interface type Size (GB) Device name Type Architecture Encryption Mode Wh
myfirstvm rhel-g- 8081 20 persistent-disk-0 Standard x86/64 Google- Boot Del
V20240213 pe managed read/write

disk

In the next part of this whitepaper, we will create an All-In-One (AIO) Splunk instance.

e See Part 2 for some more fun where we will demonstrate more terraform basics,
create our first Splunk instance and script the installation of Splunk on the host.

e See Part 3 for installing and configuring the deployment server host for our testing
environment.

e See Part 4 for installing a series of Universal Forwarders to finish off.

“§ Discovered
aiin Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 28 of 83

Part 2: The Splunk All-In-One Host

In Part one, we learned some basics about Terraform, and we created, changed and then
subsequently destroyed a VM using terraform. In part two (now that we have some basic
terraform skills), we are going to learn some more about how to use terraform to prepare
the host and install Splunk.

To accomplish this, | am going to create a bash script that downloads the Splunk installation
file, prepares the OS for Splunk installation and installs and configures the splunk instance
appropriately.

Creating a Splunk Enterprise Install Script

Here is the bash script that | used to install Splunk Enterprise on my Ubuntu OS host: Since
this is not a bash tutorial, | am not going to dissect this script too heavily.

#!/bin/bash

--- Logging Configuration ---
Define a log file for script output
log file="/tmp/build splunk core.log"

Function to log messages with timestamp
function log message() {
local message="S$1"
echo "$(date +'%Y-%m-%d %H:

o

M:%S') - Smessage" >> "S$log file" 2>l

—--- Script Execution Check ---
Check if a flag file exists to indicate previous execution
if [[-f /tmp/installscriptrun]]; then
log message "Script has already been run. Exiting."
exit O
fi

Create the flag file to mark script execution
touch /tmp/installscriptrun

--- Variable Definitions ---

Define Splunk download details

splunk filename="splunk-9.0.5-e9494146ae5c-Linux-x86 64.tgz"

splunk download url="https://download.splunk.com/products/splunk/releases/9.0.5
/linux/splunk-9.0.5-e9494146ae5c-Linux-x86 64.tgz"

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 29 of 83

—--- Transparent Huge Pages (THP) Management —---
Disable Transparent Huge Pages

log message "Disabling Transparent Huge Pages..."
echo never > /sys/kernel/mm/transparent hugepage/enabled

Check if THP is already disabled in GRUB
if ! grep -g "transparent hugepage=never" /etc/default/grub; then
log message "THP not disabled in GRUB. Modifying..."

Modify GRUB config to disable THP persistently
sed -i '/"GRUB_CMDLINE LINUX=/s/"</ transparent hugepage=never"/'
/etc/default/grub

Update GRUB configuration
sudo update-grub
else
log message "Transparent Huge Pages already disabled in GRUB."

fi

—--- Increase ulimits for Splunk User ---

log message "Setting ulimits for Splunk user..."

echo "splunk hard nofile 8192" | sudo tee -a /etc/security/limits.conf
echo "splunk soft nofile 8192"™ | sudo tee -a /etc/security/limits.conf
echo "splunk hard nproc 4096" | sudo tee -a /etc/security/limits.conf
echo "splunk soft nproc 4096" | sudo tee -a /etc/security/limits.conf
echo "splunk hard stack 8388608" | sudo tee -a /etc/security/limits.conf
echo "splunk soft stack 8388608" | sudo tee -a /etc/security/limits.conf

Apply ulimit changes
log message "Applying ulimit changes..."
sudo sysctl -p >> "Slog file" 2>&l

--- Package Installation ---

Install required packages (wget and firewalld)

log message "Installing required packages..."

sudo apt update >> "S$log file" 2>&1;

if ! sudo apt install -y wget firewalld >> "Slog file" 2>&1; then
log message "Failed to install packages. Check network/repositories."
exit 1

fi

—--- Firewall Configuration ---

Start and enable firewalld

log message "Starting and enabling firewalld..."
sudo systemctl start firewalld >> "$log file" 2>&l
sudo systemctl enable firewalld >> "$log file" 2>&l

Add firewall rules for Splunk ports

log message "Adding firewall rules for Splunk communication..."
ports=(8000 8088 8089 9997)

sudo firewall-cmd --permanent --add-port="8000/tcp"

sudo firewall-cmd --permanent --add-port="8088/tcp"

sudo firewall-cmd --permanent --add-port="8089/tcp"

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 30 of 83

sudo firewall-cmd --permanent —--add-port="9997/tcp"

Reload firewall rules
log message "Reloading firewall rules..."
sudo firewall-cmd --reload >> "S$log file" 2>s&l

-—-- Splunk Installation ---
Download Splunk Enterprise tarball
log message "Downloading Splunk Enterprise..."
cd /tmp
if ! sudo wget -O "/tmp/$splunk filename" "$splunk download url" >> "$log file"
2>&1; then
log message "Failed to download Splunk. Check network/URL."
exit 1
fi

Untar the downloaded file

log message "Extracting Splunk tarball..."

if ! sudo tar -xzf "/tmp/$splunk filename" -C /opt >> "$log file" 2>&1; then
log message "Failed to extract Splunk tarball. Check archive integrity."
exit 1

fi

-—-- Splunk User and Directory Setup ---

Create Splunk user and group

log message "Creating Splunk user and group..."

sudo useradd -r -m -d /opt/splunk -s /bin/bash -U splunk >> "S$log file" 2>s&l

--- Ownership and Permissions ---

Change ownership of Splunk directory to splunk user

log message "Setting ownership of Splunk directory..."

sudo chown -R splunk:splunk /opt/splunk >> "$log file" 2>s&l

—--- Splunk Configuration ---

Create necessary folders for Splunk configuration

log message "Creating Splunk configuration folders..."

su - splunk -c 'mkdir -p /opt/splunk/etc/apps/df testenvironment aio/local' >>
"Slog file" 2>&1

su - splunk -c 'mkdir -p /opt/splunk/etc/apps/df testenvironment aio/metadata’
>> "Slog file" 2>s&l

Create configuration files (using heredoc syntax for clarity)

log message "Creating Splunk configuration files..."

cat <<EOT >> /opt/splunk/etc/apps/df testenvironment aio/metadata/local.meta
[]

access = read : [*], write : [admin]

export = system

EOT

cat <<EOT >> /opt/splunk/etc/apps/df testenvironment aio/local/indexes.conf

B [mpE
I

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 31 of 83

[demo]

disabled = false

homePath = \$SPLUNK DB/demo/db
coldPath \$SPLUNK_ DB/demo/colddb
thawedPath = \$SPLUNK DB/demo/thaweddb
EOT

cat <<EOT >> /opt/splunk/etc/apps/df testenvironment aio/local/inputs.conf
[splunktcp://9997]

connection host = ip

EOT

cat <<EOT >> /opt/splunk/etc/system/local/user-seed.conf
[user info]

USERNAME = admin

PASSWORD = lSuperSecretadmiNpassworD

EQOT

Set ownership of configuration files to splunk user
log message "Setting ownership of Splunk configuration files..."
sudo chown -R splunk:splunk /opt/splunk/etc >> "Slog file" 2>&l1

-—-- Splunk Startup and Service Management ---

Start Splunk as the splunk user

log message "Starting Splunk..."

su - splunk -c '/opt/splunk/bin/splunk start --answer-yes —--accept-license' >>
"$log file" 2>&l

Enable Splunk to start automatically at boot

log message "Enabling Splunk boot-start..."

su - splunk -c '/opt/splunk/bin/splunk stop'

sudo /opt/splunk/bin/splunk enable boot-start -systemd-managed 1 -user splunk
>> "Slog file" 2>&l

sudo chown -R splunk:splunk /opt/splunk/etc >> "S$log file" 2>&l1

sudo systemctl start Splunkd

Indicate successful completion
log message "Splunk AIO is installed and started."

| am going to make a new Terraform project called build_testing_environment (which
remember a terraform project is just a folder on your disk), create a subfolder called
resources, and put the install script into that folder as ./build splunk core.sh

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 32 of 83

Building the main.tf

Now that we have the Splunk Enterprise install script in place, let's build our new main.tf for
the Testing environment Splunk AIO. We are going to introduce some new concepts with
Terraform syntax to achieve our desired outcome.

First, we need to add the provider block, telling Terraform that we are going to be interfacing
with Google Cloud.

provider "google" {
project = "terraform-demo-2024"
region = "us-centrall"

Next, we need a resource block to create the all-in-one Splunk Enterprise instance that will
act as a combined Search Head and Indexer for our testing environment:

resource "google compute instance" "splunk core instance 1" {
project = "terraform-demo-2024"
name = "splunk-aio"
machine type = "e2-standard-8"
zone = "us-centrall-a"

In this we are creating a "google_compute_instance" that has a terraform ID
"splunk_core_instance_1". The server's hostname is "splunk-aio" and its machine_type is
e2-standard-8 (which has 8 CPU cores and 32 GB of RAM). We are creating a 100GB boot
disk with Ubuntu 2204 LTS as the operating system.

boot disk {
initialize params {
size = 100
type = "pd-balanced"
image = "ubuntu-os-cloud/ubuntu-2204-1ts"

We want Google Cloud to execute the script we put together above upon startup.

metadata startup script = file("${path.module}/resources/build_splunk_core.sh")

This will add the public KEY from my local user profile's key pair to the authorized_keys on the new
instance under username darren, so i can SSH to the host once it is up.

“§ Discovered
nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 33 of 83

metadata = {
ssh-keys = "darren:${file("~/.ssh/id _rsa.pub")}"

This section tells terraform which network to use. This configuration is specifying that the resource
should use the default network and should have an external IP address with the premium network
tier.

network interface {
network = "default"

access_config {
network tier = "PREMIUM"

Finally, we add some tags to the host which identify the host's purpose and will also be used later for
setting up firewall rules for the hosts

tags = ["splunk", "splunk-core", "splunk-core-aio", "env-test"]

With that resource complete, our full main.tf now looks like this:

provider "google" {

project = "terraform-demo-2024"
region = "us-centrall"
}
resource "google compute instance" "splunk core instance 1" {
project = "terraform-demo-2024"
name = "splunk-aio"
machine type = "e2-standard-8"
zone = "us-centrall-a"

boot disk {
initialize params {

size = 100
type = "pd-balanced"
image = "ubuntu-os-cloud/ubuntu-2204-1ts"

metadata startup script =
file("${path.module}/resources/build splunk core.sh")

metadata = {
ssh-keys = "darren:${file("~/.ssh/id_rsa.pub")}"
}
Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 34 of 83

network interface ({
network = "default"

access_config {
network tier = "PREMIUM"

tags = ["splunk", "splunk-core", "splunk-core-aio", "env-test"]

Now that we have that complete we need to assign an external IP address for our host so that it can
be reached from the internet. To do that we add another resource block, but this time the resource
type is google_compute_address:

resource "google compute address" "splunk core address 1" {
name = "splunk-core-address-1"
project = "terraform-demo-2024"
region = "us-centrall"
address type = "EXTERNAL"

And to assign this new IP to the host, we will update the access_config section of the host resource
block, adding the address to the nat_ip :

network interface {
network = "default"

access_config {
network tier = "PREMIUM"
nat ip = google compute address.splunk core address 1l.address

So now our full main.tf file looks like this:

provider "google" {
project = "terraform-demo-2024"
region = "us-centrall"

resource "google compute instance" "splunk core instance 1" {

project = "terraform-demo-2024"
name = "splunk-aio"

machine type = "e2-standard-8"

zone = "us-centrall-a"

boot disk {

initialize params {

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 35 of 83

size = 100
type = "pd-balanced"
image = "ubuntu-os-cloud/ubuntu-2204-1ts"

metadata startup script =
file ("${path.module}/resources/build splunk core.sh")

metadata = {
ssh-keys = "darren:${file("~/.ssh/id _rsa.pub")}"

network interface ({
network = "default"

access_config {
network tier = "PREMIUM"
nat ip = google compute address.splunk core address 1l.address

tags = ["splunk", "splunk-core", "splunk-core-aio", "env-test"]
}
resource "google compute address" "splunk core address 1" {

name = "splunk-core-address-1"

project = "terraform-demo-2024"

region = "us-centrall"

address type = "EXTERNAL"

Finally, we need to create some firewall rules to allow communication from the internet to our new
host. To do that we will introduce yet another resource block for google compute:
google_compute_firewall. | am going to create two firewall rules, one which opens ports 22 (ssh),
8000 (Splunk Ul) and 8089 (Splunk management port) which would be open on all Splunk instances
and a second which opens data ingestion ports 9997 (S2S) and 8088 (HEC) which would only be open
on instances that are receiving data (Indexers or All-In-One hosts).

resource "google compute firewall" "splunk core all" ({
project = "terraform-demo-2024"
name = "splunk-core-all"
network = "default"

allow {

protocol = "tcp"
ports = ["22", "8000", "8089"]

source_ranges = ["0.0.0.0/0"]

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 36 of 83

target tags = ["splunk-core"]

resource "google compute firewall" "splunk core aio" {
project = "terraform-demo-2024"
name = "splunk-core-aio"
network = "default"
allow {
protocol = "tcp"
ports = ["9997", "8088"]

}
source_ranges = ["0.0.0.0/0"]

target tags = ["splunk-core-aio"]

The main things to note on the google_compute_firewall blocks are

e Azoneis not required for these

e Protocol can either be "tcp" or "udp”

e Source ranges can be one or more of single IPs or CIDR ranges and accepts a comma
separated list of ipv4 and ipv6 style addresses. ["0.0.0.0/0"] opens communication from all
source IPs. IPv4 and IPv6 rules should be placed into separate resource blocks and cannot
be combined.

e The target_tags identify what tags need to be applied to a host for this firewall rule to be
applied. In this example, the splunk_core_all rules will be applied to any host with "splunk-
core" tag and the splunk_core_aio rule will be applied to any host with the splunk-core-aio tag.
Since our single resource has both of these tags, both of the rules will be applied to that host.

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 37 of 83

Building the outputs.tf

With our full main.tf completed for the Splunk AIO host, we are going to create one more file :
outputs.tf. This file tells Terraform to print to the screen specific data once the terraform apply is
complete.

$> cat outputs.tf

output "splunk core aio ip" {

description = "Public IP address of Splunk AiO instance"

value =
google compute instance.splunk core instance l.network interface[0].access conf
ig[0] .nat ip
}

This will output to screen the nat_ip for our google_compute_instance with id splunk_core_instance_1

Our tree view looks like this at this point

build testing environment

F—— main.tf
F—— outputs.tf
L— resources

L build splunk core.sh

Putting it all together

To create the host, first we run terraform init:
S terraform init
Initializing the backend...

Initializing provider plugins...

- Finding latest version of hashicorp/google...

- Installing hashicorp/google v5.20.0...

- Installed hashicorp/google v5.20.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands

T T
u

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 38 of 83

should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

Then we run terraform plan to check that the code is syntactically correct and review the output to
ensure it is as expected:

$ terraform plan
Terraform used the selected providers to generate the following execution plan.
Resource actions are
indicated with the following symbols:
+ create

Terraform will perform the following actions:

google compute address.splunk core address 1 will be created

+ resource "google compute address" "splunk core address 1" {
+ address = (known after apply)
+ address type = "EXTERNAL"
+ creation timestamp = (known after apply)
+ effective labels = (known after apply)
+ id = (known after apply)
+ label fingerprint = (known after apply)
+ name = "splunk-core-address-1"
+ network tier = (known after apply)
+ prefix length = (known after apply)
+ project = "terraform-demo-2024"
+ purpose = (known after apply)
+ region = "us-centrall"
+ self link = (known after apply)
+ subnetwork = (known after apply)
+ terraform labels = (known after apply)
+ users = (known after apply)

google compute firewall.splunk core aio will be created

+ resource "google compute firewall" "splunk core aio" {
+ creation timestamp = (known after apply)
+ destination ranges = (known after apply)
+ direction = (known after apply)
+ enable logging = (known after apply)
+ id = (known after apply)
+ name = "splunk-core-aio"
+ network = "default"
+ priority = 1000
+ project = "terraform-demo-2024"
+ self link = (known after apply)
+ source ranges = [

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 39 of 83

+ "0.0.0.0/0",
]
+ target tags = [
+ "splunk-core-aio",

+ allow {
+ ports = [
+ "9997",
+ "8088",
]
+ protocol = "tcp"

google compute firewall.splunk core all will be created

+ resource "google compute firewall" "splunk core all" ({
+ creation timestamp = (known after apply)
+ destination ranges = (known after apply)
+ direction = (known after apply)
+ enable logging = (known after apply)
+ id = (known after apply)
+ name = "splunk-core-all"
+ network = "default"
+ priority = 1000
+ project = "terraform-demo-2024"
+ self link = (known after apply)
+ source ranges = [

+ "0.0.0.0/0",
]
+ target tags = [
+ "splunk-core",

+ allow {
+ ports = [
+ "22",
+ "8000",
+ "8089",
]
+ protocol = "tcp"

google compute instance.splunk core instance 1 will be created

+ resource "google compute instance" "splunk core instance 1" {

+ can_ip forward = false

+ cpu_platform = (known after apply)
+ current status = (known after apply)
+ deletion protection = false

+ effective labels = (known after apply)
+ guest accelerator = (known after apply)
+ id = (known after apply)

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 40 of 83

+ instance id = (known after apply)
+ label fingerprint = (known after apply)
+ machine type = "e2-standard-8"
+ metadata = {

+ "ssh-keys" = <<-EOT

darren:ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABgQCI90g5Kg9yrqHoWwIpSpTT/BAFpBlSGlwvTESCTHZz jpntg+aQ04WJdQz
LW3EEjPXY6yBtOfIIx5VG40/0iFsQUIHOk1rnTRMgl5hA8S27qD0dpVbxfZGS6YJK3gTuIMiBjVTOKCX/caGde
1KDiN7PW4bwiatkvg6C4Q7xMhRm/Rg9312zYs3X9pUjk210P2Vxd0EqhyhRAIughpvTsPoudNpSRFMBRkt PUUD
GtBuMcBdxhHeDVJg/fxZUHORXxPDOWFEUOrNm1DsPBjkKInsRGP4kHR0se7GkiDi1FfBz+s4VQedpylgrKlein2
UH6VPpsvSGem8mlISWS/uDFcOHzCb4p5e0SVpPmn+gzzc4SxMotHw/hb3eg5EAWkS8uo3pec8RHR5X9uDNJO c8
p7m4 yuWNdOOT8QTjnnUOUIuIXw8mLiWGFYLOCcVHCU4RF66HUFwdZomGh5vYCmMWEF72/1BEQxZSIK8EI £XPg2TV
3CLn6vRGVGL3P7F3LhVIONu+v8Pc= darren
EOT
}
+ metadata fingerprint = (known after apply)
+ metadata_startup_ script = <<-EOT
#!/bin/bash

--- Logging Configuration ---
Define a log file for script output
log file="/tmp/build splunk core.log"

Function to log messages with timestamp
function log message () {
local message="$1"
echo "$ (date +'%Y-%m-%d $H:%M:%S') - Smessage" >> "Slog file" 2>l

—--- Script Execution Check ---
Check if a flag file exists to indicate previous execution
if [[-f /tmp/installscriptrun]]; then
log message "Script has already been run. Exiting."
exit O
fi

Create the flag file to mark script execution
touch /tmp/installscriptrun

--- Variable Definitions ---
Define Splunk download details
splunk filename="splunk-9.0.5-e9494146ae5c-Linux-x86 64.tgz"

splunk download url="https://download.splunk.com/products/splunk/releases/9.0.5/1linux/
splunk-9.0.5-e9494146ae5c-Linux-x86 64.tgz"

--- Transparent Huge Pages (THP) Management ---

Disable Transparent Huge Pages

log message "Disabling Transparent Huge Pages..."

echo never > /sys/kernel/mm/transparent hugepage/enabled

Check if THP is already disabled in GRUB
if ! grep -g "transparent hugepage=never" /etc/default/grub; then

T T
u

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 41 of 83

log message "THP not disabled in GRUB. Modifying..."

Modify GRUB config to disable THP persistently
sed -i '/"GRUB_CMDLINE LINUX=/s/"</ transparent hugepage=never"/'
/etc/default/grub

Update GRUB configuration
sudo update-grub
else
log message "Transparent Huge Pages already disabled in GRUB."

fi

-—- Increase ulimits for Splunk User ---

log message "Setting ulimits for Splunk user..."

echo "splunk hard nofile 8192"™ | sudo tee -a /etc/security/limits.conf
echo "splunk soft nofile 8192"™ | sudo tee -a /etc/security/limits.conf
echo "splunk hard nproc 4096" | sudo tee -a /etc/security/limits.conf
echo "splunk soft nproc 4096" | sudo tee -a /etc/security/limits.conf
echo "splunk hard stack 8388608" | sudo tee -a /etc/security/limits.conf
echo "splunk soft stack 8388608" | sudo tee -a /etc/security/limits.conf

Apply ulimit changes
log message "Applying ulimit changes..."
sudo sysctl -p >> "$log file" 2>¢l1

—--- Package Installation ---

Install required packages (wget and firewalld)

log message "Installing required packages..."

sudo apt update >> "$log file" 2>&1;

if ! sudo apt install -y wget firewalld >> "Slog file" 2>&1; then
log message "Failed to install packages. Check network/repositories."
exit 1

fi

—--- Firewall Configuration ---

Start and enable firewalld

log message "Starting and enabling firewalld..."
sudo systemctl start firewalld >> "$log file" 2>&l
sudo systemctl enable firewalld >> "$log file" 2>¢l

Add firewall rules for Splunk ports

log message "Adding firewall rules for Splunk communication...”
ports=(8000 8088 8089 9997)

sudo firewall-cmd --permanent —--add-port="8000/tcp"

sudo firewall-cmd --permanent —--add-port="8088/tcp"

sudo firewall-cmd --permanent —--add-port="8089/tcp"

sudo firewall-cmd --permanent —--add-port="9997/tcp"

Reload firewall rules
log message "Reloading firewall rules..."

sudo firewall-cmd --reload >> "S$log file" 2>&l

--- Splunk Installation —---

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 42 of 83

Download Splunk Enterprise tarball
log message "Downloading Splunk Enterprise..."
if ! sudo wget -O "/tmp/S$splunk filename" "$splunk download url" >>
"Slog file" 2>&l1; then
log message "Failed to download Splunk. Check network/URL."
exit 1
fi

Untar the downloaded file
log message "Extracting Splunk tarball..."
if ! sudo tar -xzf "/tmp/$splunk filename" -C /opt >> "S$log file" 2>&1;

then
log message "Failed to extract Splunk tarball. Check archive integrity."
exit 1
fi
-—-- Splunk User and Directory Setup ---
Create Splunk user and group
log message "Creating Splunk user and group..."
sudo useradd -r -m -d /opt/splunk -s /bin/bash -U splunk >> "$log file"
2>&1
-—-- Ownership and Permissions ---
Change ownership of Splunk directory to splunk user
log message "Setting ownership of Splunk directory..."
sudo chown -R splunk:splunk /opt/splunk >> "$log file" 2>s&l
—--- Splunk Configuration ---
Create necessary folders for Splunk configuration
log message "Creating Splunk configuration folders..."
su - splunk -c 'mkdir -p
/opt/splunk/etc/apps/df testenvironment aio/local' >> "$log file" 2>s&l
su - splunk -c¢ 'mkdir -p

/opt/splunk/etc/apps/df testenvironment aio/metadata' >> "$log file" 2>¢l

Create configuration files (using heredoc syntax for clarity)

log message "Creating Splunk configuration files..."

cat <<EQT >>
/opt/splunk/etc/apps/df testenvironment aio/metadata/local.meta

[1

access = read : [*], write : [admin]
export = system
EQOT

cat <<EQT >>
/opt/splunk/etc/apps/df testenvironment aio/local/indexes.conf

[demo]

disabled = false

homePath = \$SPLUNK DB/demo/db

coldPath \$SPLUNK_DB/demo/colddb

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 43 of 83

thawedPath = \$SPLUNK DB/demo/thaweddb
EOT

cat <<EOT >> /opt/splunk/etc/apps/df testenvironment aio/local/inputs.conf
[splunktcp://9997]

connection host = ip

EOT

cat <<EOT >> /opt/splunk/etc/system/local/user-seed.conf
[user info]

USERNAME = admin

PASSWORD = 1lSuperSecretadmiNpassworD

EOT

Set ownership of configuration files to splunk user
log message "Setting ownership of Splunk configuration files..."
sudo chown -R splunk:splunk /opt/splunk/etc >> "$log file" 2>&1

--- Splunk Startup and Service Management ---

Start Splunk as the splunk user

log message "Starting Splunk..."

su - splunk -c '/opt/splunk/bin/splunk start --answer-yes --accept-
license' >> "Slog file" 2>&l

Enable Splunk to start automatically at boot

log message "Enabling Splunk boot-start..."

su - splunk -c '/opt/splunk/bin/splunk stop'

sudo /opt/splunk/bin/splunk enable boot-start -systemd-managed 1 -user
splunk >> "$log file" 2>&l

sudo chown -R splunk:splunk /opt/splunk/etc >> "$log file" 2>&l1

sudo systemctl start Splunkd

Indicate successful completion
log message "Splunk AIO is installed and started."

EOT
+ min_cpu platform = (known after apply)
+ name = "splunk-aio"
+ project = "terraform-demo-2024"
+ self link = (known after apply)
+ tags =
+ "env-test",
+ "splunk",
+ "splunk-core",
+ "splunk-core-aio",
]
+ tags fingerprint = (known after apply)
+ terraform labels = (known after apply)
+ zone = "us-centrall-a"

+ boot disk {
+ auto delete = true
+ device name

(known after apply)

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 44 of 83

+ disk encryption key sha256 = (known after apply)
+ kms_key self link = (known after apply)
+ mode = "READ WRITE"

+ source = (known after apply)

+ initialize params {

+ image = "ubuntu-os-cloud/ubuntu-2204-1ts"
+ labels = (known after apply)

+ provisioned iops = (known after apply)

+ provisioned throughput = (known after apply)

+ size = 100

+ type = "pd-balanced"

+ network interface ({
+ internal ipvé prefix length =

(known after apply
ipvé_access_type = (known after apply
=

)
+)
+ ipv6_address known after apply)
+ name = (known after apply)
+ network = "default"
+ network ip (known after apply)
+ stack type (known after apply)
+ subnetwork = (known after apply)
+ ()

subnetwork project = (known after apply
+ access_config {

+ nat _ip = (known after apply)
"PREMIUM"

+ network tier

Plan: 4 to add, 0 to change, 0 to destroy.

Changes to Outputs:
+ splunk core aio ip = (known after apply)

Note: You didn't use the -out option to save this plan, so Terraform can't guarantee
to take exactly
these actions if you run "terraform apply" now.

This shows 4 objects that are being created. 1 google_compute_instance, 1
google_compute_address and 2 google_compute_firewall and it will output the splunk_core_aio_ip..
Since this is the expected result, we can apply the code with terraform apply.

$ terraform apply

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 45 of 83

<< snipped plan output as it is seen above >>

Plan: 4 to add, 0 to change, 0 to destroy.

Changes to Outputs:
+ splunk core aio ip = (known after apply)

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes
google compute firewall.splunk core aio: Creating...

google compute firewall.splunk core all: Creating...
google compute address.splunk core address 1l: Creating...

google compute firewall.splunk core aio: Still creating... [10s elapsed]
google compute firewall.splunk core all: Still creating... [10s elapsed]
google compute address.splunk core address 1: Still creating... [10s elapsed]

google compute address.splunk core address 1l: Creation complete after 12s
[id=projects/terraform-demo-2024/regions/us—-centrall/addresses/splunk-core-
address-1]

google compute instance.splunk core instance 1l: Creating...

google compute firewall.splunk core aio: Creation complete after 12s
[id=projects/terraform-demo-2024/global/firewalls/splunk-core-aio]

google compute firewall.splunk core all: Creation complete after 12s
[id=projects/terraform-demo-2024/global/firewalls/splunk-core-all]

google compute instance.splunk core instance 1: Still creating... [10s elapsed]
google compute instance.splunk core instance 1l: Creation complete after 13s
[id=projects/terraform-demo-2024/zones/us-centrall-a/instances/splunk-aio]

Apply complete! Resources: 4 added, 0 changed, 0 destroyed.
Outputs:
splunk core aio ip = "34.71.1.185"

The apply command completes successfully in a few moments and the IP address for the
new instance is 34.71.1.185.

Log into the newly created AlO host

Since i have used the default ssh key for my user profile with username darren, | can now
log into the host using

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 46 of 83

ssh darren@35.223.244.161

The installation script logs its actions to /tmp/build_splunk_core.log. Review that file for any
errors and if none are found, then log into Splunk with the IP address and port 8000. Note
that the communication is http since https was not set up in the web.conf when | set up the
config files in the startup script.

http://35.223.244.161:8000

In my script, | set the admin login to wusername: admin password:
1SuperSecretadmiNpassworD. When | open the Splunk Ul, | can login with those credentials
and | am ready to go with my AlO Splunk instance.

Explore Splunk Enterprise

i Discovered
aiin Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 47 of 83

http://35.223.244.161:8000/

Thanks for reading. In the next part, we discuss deployment and configuration of the Splunk

deployment server.

e Part 1 -Introduction to Terraform

e Part 2 - Deploy, install and configure the Splunk All-in-One host

e Part 3 - Deploy, install and configure the Splunk Deployment Server
e Part4 - Install a series of Universal Forwarders

“§ Discovered

< Intelligence
© 2024 Discovered Intelligence Inc. All rights reserved. Page 48 of 83

Part 3: Splunk Deployment Server Installation &
Configuration

In Part one, we learned some basics about Terraform, and we created, changed and then

subsequently destroyed a VM using terraform. Then in part two we learned how to set up
a startup script on the GCP host and we used terraform to prepare the host and install Splunk
on our AlO host. In this the third part, we are going to set up our Deployment Server host,
prepare it to deploy our app to deployment clients and set it out to output its internal logs

to the main Splunk AlO host.

Creating a Deployment Server Install Script

First, we are going to create another bash script for installing Splunk. This will be very similar
to the one we used in Part 2, but with a few differences. The new script is located in the
same ./resources directory as the build_splunk_core.sh and is called build_splunk_ds.sh.

Here are the differences between the splunk core and ds installation scripts:

1) We don't need to open ports 9997 and 8088 on firewalld as the DS does not need to

have data ingest turned on,

2) Inthe config file creation section, | don't create the inputs.conf file and instead create

an outputs.conf to point the DS's internal logs to the AIO splunk host.

Note, | am

using GCP DNS to point to the host using <hostname>.c.<project>.internal so in the
case of this demo, the AIO hostname is splunk-aio and the project is called

terraformdemo2024, SO I point the outputs.conf to
aio.c.terraformdemo2024.internal:9997

3) | create an df_all_forwarderoutputs app in $SPLUNK_HOME/etc/deployment-apps

which sets outputs.conf for our deployment clients

4) | uploaded the app | am testing to google drive (TA-demo_app) and set its sharing
settings to "Anyone with the link". In the script | am using wget to download the file

Discovered
Intelligence

T T
u

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 49 of 83

to /tmp and then install it to $SPLUNK_HOME/etc/deployment-apps so that it will be
installed to the deployment clients.

5) | create $SPLUNK_HOME/etc/apps/TA-demo_app/local/inputs.conf for the TA-
demo_app so it collects data and sends to

6) Finally, still in the config file creation section, | created a serverclass.conf which
defines a single serverclass (demoapp), whitelists all hosts that connect to forwarder
management (whitelist.0 = *) and installs the app that for testing (TA-demo_app)

#!/bin/bash

--- Logging Configuration ---
Define a log file for script output
log file="/tmp/build splunk ds.log"

Function to log messages with timestamp
function log message () {
local message="$1"
echo "S$(date +'%Y-%m-%d $H:%M:%S') - Smessage" >> "$log file" 2>&l

—--- Script Execution Check ---
Check if a flag file exists to indicate previous execution
if [[-f /tmp/installscriptrun]]; then
log message "Script has already been run. Exiting."
exit O
fi

Create the flag file to mark script execution
touch /tmp/installscriptrun

-—- Variable Definitions ---

Define Splunk download details

splunk filename="splunk-9.0.5-e9494146ae5c-Linux-x86 64.tgz"

splunk download url="https://download.splunk.com/products/splunk/releases/9.0.5
/linux/splunk-9.0.5-e9494146ae5c-Linux-x86_ 64.tgz"

-—-- Transparent Huge Pages (THP) Management ---

Disable Transparent Huge Pages

log message "Disabling Transparent Huge Pages..."

echo never > /sys/kernel/mm/transparent hugepage/enabled

Check if THP is already disabled in GRUB
if ! grep -g "transparent hugepage=never" /etc/default/grub; then
log message "THP not disabled in GRUB. Modifying..."

Modify GRUB config to disable THP persistently

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 50 of 83

sed -i '/”GRUB_CMDLINE LINUX=/s/"</ transparent hugepage=never"/'
/etc/default/grub

Update GRUB configuration
sudo update-grub
else
log message "Transparent Huge Pages already disabled in GRUB."

fi

—-—- Increase ulimits for Splunk User ---

log message "Setting ulimits for Splunk user..."

echo "splunk hard nofile 8192" | sudo tee -a /etc/security/limits.conf
echo "splunk soft nofile 8192" | sudo tee -a /etc/security/limits.conf
echo "splunk hard nproc 4096" | sudo tee -a /etc/security/limits.conf
echo "splunk soft nproc 4096" | sudo tee -a /etc/security/limits.conf
echo "splunk hard stack 8388608" | sudo tee -a /etc/security/limits.conf
echo "splunk soft stack 8388608" | sudo tee -a /etc/security/limits.conf

Apply ulimit changes
log message "Applying ulimit changes..."
sudo sysctl -p >> "$log file" 2>&1

--- Package Installation ---

Install required packages (wget and firewalld)

log message "Installing required packages..."

sudo apt update >> "$log file" 2>&1;

if ! sudo apt install -y wget firewalld >> "$log file" 2>&l; then
log message "Failed to install packages. Check network/repositories.”
exit 1

fi

—--- Firewall Configuration ---

Start and enable firewalld

log message "Starting and enabling firewalld..."
sudo systemctl start firewalld >> "$log file" 2>&l
sudo systemctl enable firewalld >> "$log file" 2>&l

Add firewall rules for Splunk ports

log message "Adding firewall rules for Splunk communication...”
sudo firewall-cmd --permanent —--add-port="8000/tcp"

sudo firewall-cmd --permanent --add-port="8089/tcp"

Reload firewall rules
log message "Reloading firewall rules..."
sudo firewall-cmd --reload >> "$log file" 2>&l

--- Splunk Installation —---
Download Splunk Enterprise tarball
log message "Downloading Splunk Enterprise..."
if ! sudo wget -0 "/tmp/$splunk filename" "$splunk download url" >> "Slog file"
2>&1; then
log message "Failed to download Splunk. Check network/URL."
exit 1

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 51 of 83

fi

Untar the downloaded file

log message "Extracting Splunk tarball..."

if ! sudo tar -xzf "/tmp/$splunk filename" -C /opt >> "Slog file" 2>&1; then
log message "Failed to extract Splunk tarball. Check archive integrity."
exit 1

fi

-—-- Splunk User and Directory Setup ---

Create Splunk user and group

log message "Creating Splunk user and group..."

sudo useradd -r -m -d /opt/splunk -s /bin/bash -U splunk >> "$log file" 2>&l

-—-- Ownership and Permissions ---

Change ownership of Splunk directory to splunk user

log message "Setting ownership of Splunk directory..."

sudo chown -R splunk:splunk /opt/splunk >> "$log file" 2>&l

-—-- Download app to be tested to deployment server
Note: App has been saved and shared in Google Drive with
"Anyone with the link can access" permissions

log message "Downloading TA-demo app from Google Drive"
if ! sudo wget -O "/tmp/TA-demo app.tgz" "https://drive.google.com/file/d/1jH3-
07md8rXYzyMT7Jn841C-xoTWB6BB/view?usp=sharing" >> "$log file" 2>&l; then
log message "Failed to download Splunk. Check network/URL."
exit 1
fi

--- Splunk Configuration ---

Create necessary folders for Splunk configuration

log message "Creating Splunk configuration folders..."

su - splunk -c 'mkdir -p /opt/splunk/etc/apps/df testenvironment ds/local' >>
"$log file" 2>&l

su - splunk -c 'mkdir -p /opt/splunk/etc/apps/df testenvironment ds/metadata’
>> "Slog file" 2>s&l

su - splunk -c 'mkdir -p /opt/splunk/etc/deployment-

apps/df _all forwarderoutputs/local' >> "$log file" 2>¢l

su - splunk -c 'mkdir -p /opt/splunk/etc/deployment-

apps/df all forwarderoutputs/metadata' >> "$log file" 2>s&l

Create configuration files (using heredoc syntax for clarity)
log message "Creating Splunk configuration files..."

cat <<EOT >> /opt/splunk/etc/apps/df testenvironment ds/metadata/local.meta
[]

access = read : [*], write : [admin]
export = system
EQOT

cat <<EOT >> /opt/splunk/etc/apps/df testenvironment ds/local/outputs.conf

B [mpE
I

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 52 of 83

[tcpout]

defaultGroup = aio

[tcpout:aio]

server = splunk-aio.c.terraformdemo2024.internal:9997
EOT

cat <<EOT >> /opt/splunk/etc/apps/df testenvironment ds/local/serverclass.conf
[serverClass:demoapp]

filterType = whitelist

whitelist.0 = *
[serverClass:demoapp:app:TA-demo app]
stateOnClient = enabled

restartSplunkd = true
[serverClass:demoapp:app:df all forwarderoutputs]
stateOnClient = enabled

restartSplunkd = true

EQOT

cat <<EOT >> /opt/splunk/etc/system/local/user-seed.conf
[user info]

USERNAME = admin

PASSWORD = lSuperSecretadmiNpassworD

EQOT

cat <<EOT >> /opt/splunk/etc/deployment-—
apps/df all forwarderoutputs/metadata/local.meta
[]

access = read : [*], write : [admin]
export = system
EQOT

cat <<EOT >> /opt/splunk/etc/deployment-

apps/df _all forwarderoutputs/local/outputs.conf
[tcpout]

defaultGroup = aio

[tcpout:aio]

server = splunk-aio.c.terraformdemo2024.internal:9997
EQOT

Download TA-demo app from Google drive and install to deployment-apps folder
log message "Downloading TA-demo_ app"
if ! sudo wget -O "/tmp/TA-demo app.tgz" "https://drive.google.com/file/d/1jH3-
07md8rXYzyMT7Jn841C-xoTWB6BB" >> "S$log file" 2>&1; then

log message "Failed to download Demo App. Check network/URL."

exit 1
fi
if ! tar -xzf /tmp/TA-demo_app.tgz -C /opt/splunk/etc/deployment-apps/ >>
"Slog file" 2>&1; then

log message "Failed to untar TA-demo app.tgz. Check file integrity."

exit 1
fi

Set ownership of configuration files to splunk user

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 53 of 83

log message "Setting ownership of Splunk configuration files..."
sudo chown -R splunk:splunk /opt/splunk/etc >> "S$log file" 2>&l1

—--- Splunk Startup and Service Management ---

Start Splunk as the splunk user

log message "Starting Splunk..."

su - splunk -c '/opt/splunk/bin/splunk start --answer-yes —--accept-license' >>
"$log file" 2>&l

Enable Splunk to start automatically at boot

log message "Enabling Splunk boot-start..."

su - splunk -c '/opt/splunk/bin/splunk stop'

sudo /opt/splunk/bin/splunk enable boot-start -systemd-managed 1 -user splunk
>> "Slog file" 2>s&l

sudo chown -R splunk:splunk /opt/splunk/etc >> "S$log file" 2>&l1

sudo systemctl start Splunkd

Indicate successful completion
log message "Splunk DS is installed and started.”

Amending the main.tf

With the new script in place in the resources directory, now | need to alter the main.tf file to
add resource definitions for the new infrastructure. This will require adding two more
resource blocks, another google_compute_instance and another google_compute_address.
Both will look familiar, though the google_compute_instance block will point to the DS setup
script instead of the AIO one we used in the previous host definition.

resource "google compute instance" "splunk core instance 2" {
project = "terraform-demo-2024"
name = "splunk-ds"
machine type = "e2-small"
zone = "us-centrall-a"
boot disk {
initialize params {

size = 20

type = "pd-balanced"

image = "ubuntu-os-cloud/ubuntu-2204-1ts"

metadata startup script =
file ("${path.module}/resources/build splunk ds.sh")

metadata = {
ssh-keys = "darren:${file("~/.ssh/id rsa.pub")}"

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 54 of 83

network interface {
network = "default"

access_config {
network tier = "PREMIUM"

nat ip = google compute address

.splunk core address 2.address

tags = ["splunk", "splunk-core", "splunk-ds", "env-test"]

resource "google co
name = "splunk-core-address-2"
project = "terraform-demo-2024"
region = "us-centrall"
address type = "EXTERNAL"

mpute address" "splunk core address 2" {

Note, additional firewall rules are not required as the original firewall rule "splunk_core_all"
seen below opened the required ports for the DS (8000 and 8089) and this is applied to the
new host because of its target tags pointing to "splunk-core" which was applied to the host

definition.
resource "google compute firewall" "splunk core all" ({
project = "terraform-demo-2024"
name = "splunk-core-all"
network = "default"
allow {
protocol = "tcp"
ports = ["22",

source_ranges = ["0.0.0.0/0"]

target tags = ["splunk-core"]

The whole main.tf now looks like this:

provider "google" {

project = "terraform-demo-2024"

region = "us-centrall"

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 55 of 83

resource "google compute instance" "splunk core instance 1" ({

project = "terraform-demo-2024"
name = "splunk-aio"

machine type = "e2-standard-8"

zone = "us-centrall-a"

boot disk {
initialize params {

size = 100
type = "pd-balanced"
image = "ubuntu-os-cloud/ubuntu-2204-1ts"

metadata startup script =
file("${path.module}/resources/build splunk core.sh")

metadata = {
ssh-keys = "darren:${file("~/.ssh/id rsa.pub")}"

network interface {
network = "default"

access_config {
network tier = "PREMIUM"
nat ip = google compute address.splunk core address 1l.address

tags = ["splunk", "splunk-core", "splunk-core-aio", "env-test"]
}
resource "google compute address" "splunk core address 1" {
name = "splunk-core-address-1"
project = "terraform-demo-2024"
region = "us-centrall"
address type = "EXTERNAL"
}
resource "google compute instance" "splunk core instance 2" {
project = "terraform-demo-2024"
name = "splunk-ds"
machine type = "e2-small"
zone = "us-centrall-a"

boot disk {
initialize params {

size = 20
type = "pd-balanced"
image = "ubuntu-os-cloud/ubuntu-2204-1ts"

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 56 of 83

metadata startup script =
file ("${path.module}/resources/build splunk ds.sh")

metadata = {
ssh-keys = "darren:${file("~/.ssh/id rsa.pub")}"

network interface {
network = "default"

access_config {
network tier = "PREMIUM"
nat ip = google compute address.splunk core address 2.address

tags = ["splunk", "splunk-core", "splunk-ds", "env-test"]
}
resource "google compute address" "splunk core address 2" {
name = "splunk-core-address-2"
project = "terraform-demo-2024"
region = "us-centrall"
address type = "EXTERNAL"
}
resource "google compute firewall" "splunk core all" {
project = "terraform-demo-2024"
name = "splunk-core-all"
network = "default"
allow {
protocol = "tcp"
ports = ["22", "8000", "8089"]
}
source_ranges = ["0.0.0.0/0"]

target tags = ["splunk-core"]

resource "google compute firewall" "splunk core aio" ({
project = "terraform-demo-2024"
name = "splunk-core-aio"
network = "default"
allow {

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 57 of 83

protocol = "tcp"

ports = ["9997", "8088"]
}
source ranges = ["0.0.0.0/0"]
target tags = ["splunk-core-aio"]

Amending the outputs.tf

Lastly before | apply the terraform code, | want to add the output of the DS IP address to the
outputs.tf file:

output "splunk core aio ip" {

description = "Public IP address of Splunk AiO instance"

value =
google compute instance.splunk core instance l.network interface[0].access conf
ig[0].nat ip
}
output "splunk core ds ip" {

description = "Public IP address of Splunk DS instance"

value =
google compute instance.splunk core instance 2.network interface[0].access conf

ig[0].nat ip
}

Putting it all together

Now when | run terraform plan, | get the following output:

Plan: 2 to add, 0 to change, 0 to destroy.

Changes to Outputs:
+ splunk core ds ip = (known after apply)

This is exactly what | expected. Since the AIO host was already created as well as the IP
address and firewall rules, two new resources added so | will run terraform apply.

> terraform apply

Plan: 2 to add, 0 to change, 0 to destroy.

Changes to Outputs:
+ splunk core ds ip = (known after apply)

£ Discovered
< Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 58 of 83

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

google compute address.splunk core address 2: Creating...

google compute address.splunk core address 2: Still creating... [10s elapsed]
google compute address.splunk core address 2: Creation complete after 12s
[id=projects/terraform-demo-2024/regions/us-centrall/addresses/splunk-core-
address-2]

google compute instance.splunk core instance 2: Creating...

google compute instance.splunk core instance 2: Still creating... [10s elapsed]
google compute instance.splunk core instance 2: Creation complete after 13s
[id=projects/terraform-demo-2024/zones/us-centrall-a/instances/splunk-ds]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.
Outputs:

splunk core aio ip = "34.123.210.235"
splunk core ds ip = "34.41.154.142"

Log into the newly created Splunk deployment server

Similar to on the AIO host, to confirm everything worked correctly, | SSH into the host and
review the install script log for errors and then log into the host on the Splunk Ul to confirm
that it is running.

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 59 of 83

splunk>enterprise

Your session has expired. Log in to return to the system.

The Splunk Ul on the DS loads successfully. When | look at the _internal index on the Splunk-
AIO host, | can see that we are receiving logs from both hosts.

New Search

When i open the Forwarder Management page, | see one DS Managed app, TA-demo_app

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 60 of 83

Helpv Q Find

Documentation [2

Forwarder Management

Repository Location: $SPLUNK_HOME/etc/deployment-apps

0 Clients 0 Clients 0 Total downloads

PHONED HOME IN THE LAST 24 HOURS DEPLOYMENT ERRORS IN THE LAST 1HOUR
Apps (1) Server Classes (1) Clients (0)
Deployed Sucecessfully » filter
14pps 10 Per Page ~
Name Actions After Installation Clients
ta-demo_app Edit Enable App 0 deployed

And the single server class defined in serverclass.conf: demo

Documentation [2

Forwarder Management

Repository Location: $SPLUNK_HOME/etc/deployment-apps

0 Clients 0 Clients 0 Total downloads

ENT ERRORS IN THE LAST 1 HOUR

DEPLOYME

PHONED HOME IN THE LAST 24 HOU
Apps (1) Server Classes (1) Clients (0)

All Server Classes * filter New Server Class

1Server Classes 10 Per Page =

Last Reload Mame Actions Apps Clients
9 minutes ago demoapp Edit = o] 0 deployed
Which matches on all hosts (*)
Edit Clients
Server Class: demoapp
Exclude (excludelist) Filter by Machine Type

Include (includelist)
(machineTypesFilter)

Optional

e e -~
Optional

Discovered

Intelligence
© 2024 Discovered Intelligence Inc. All rights reserved. Page 61 of 83

And adds the TA-demo_app application to each host.

Edit Apps

Server Class: demoapp

Documentation [2 Cance Save

Unselected Apps 1Selected App
filter

la-demo_app

Thanks for reading. Check out the final part of this whitepaper, where we will install some
universal forwarders, join them to the deployment server and review their output to finish
off this testing cycle.

e Part 1 -Introduction to Terraform

e Part 2 - Deploy, install and configure the Splunk All-in-One host

e Part 3 - Deploy, install and configure the Splunk Deployment Server

e Part4 - Install a series of Universal Forwarders and run through a test cycle

“i'§ Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 62 of 83

Part 4. Installing Universal Forwarders

In Part one, we learned some basics about Terraform, and we created, changed and then
subsequently destroyed a VM using terraform. In part two, we learned how to add scripting
to prepare and install Splunk for the all-in-one host. Then in part three we installed and
configured a Deployment Server. In this last part, we are going to install the Splunk Universal
Forwarder on 4 different OS's and have them join the deployment server, install the TA-
demo_app and df_all_forwarderoutputs apps, and then review the data returned from the
TA on the Splunk Enterprise indexes.

Creating a forwarder install script

Similar to the previous entries, let's start with the script that will prep the hosts and install
the Splunk Universal Forwarder on each.

| wanted this version of the script to be able to handle both Debian and Redhat flavours of
Linux, and to be able to install any available version of the Splunk Universal Forwarder, so
the script has been designed to take command line arguments specifying the linux flavour (-
f), the download url for the Splunk Universal Forwarder (-u), and the version of Splunk that
is being installed (-v).

The other notable difference between the Splunk Enterprise installation scripts is the
deploymentclient.conf, which is pointing each UF to the Deployment Server so it will check
into the DS for Forwarder Management.

Below is the script which i have saved into ./resources/build_splunk_uf.sh:

#!/bin/bash
--- Logging Configuration ---

Define a log file for script output
log file="/tmp/build splunk uf.log"

Function to log messages with timestamp

function log message() {
local message="$1"
echo "S(date +'%Y-%m-%d SH:%M:%S') - Smessage" >> "$log file" 2>¢l

T T
u

“§ Discovered
nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 63 of 83

—--- Script Execution Check ---
Check if a flag file exists to indicate previous execution
if [[-f /tmp/installscriptrun]]; then
log message "Script has already been run. Exiting."
exit O
fi

Create the flag file to mark script execution
touch /tmp/installscriptrun

Retrieve command line arguments
while getopts ":f:u:v:" opt; do
case Sopt in
f) FLAVOUR="S$SOPTARG"
u) URL="SOPTARG"
v) VERSION="SOPTARG"
\?) echo "Invalid option -$OPTARG" >&2
exit 1
esac
done
log message "Building version [SVERSION] on [$SFLAVOUR] from [SURL]"

Installing needed apps
if [[$FLAVOUR == "rh"]]; then
if ! sudo yum -y install wget; then
log message "Error installing wget."
exit 1
fi
if ! sudo yum -y install bind-utils; then
log message "Error installing bind-utils."
exit 1
fi
elif [[SFLAVOUR == "deb"]1]; then
if ! sudo apt-get -y install wget; then
log message "Error installing wget."
exit 1
fi
if ! sudo apt-get -y install dnsutils; then
log message "Error installing dnsutils."

exit 1
fi
fi
-—— Increase ulimits for Splunk User ---
log message "Setting ulimits for Splunk user..."
echo "splunk hard nofile 8192" | sudo tee -a /etc/security/limits.conf
echo "splunk soft nofile 8192"™ | sudo tee -a /etc/security/limits.conf

T T
u

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 64 of 83

echo "splunk hard nproc 4096" | sudo tee -a /etc/security/limits.conf

echo "splunk soft nproc 4096" | sudo tee -a /etc/security/limits.conf
echo "splunk hard stack 8388608" | sudo tee -a /etc/security/limits.conf
echo "splunk soft stack 8388608" | sudo tee -a /etc/security/limits.conf

Download the latest Splunk Enterprise tarball using wget
cd /tmp
FILENAME="S${URL##*/}"
if ! sudo wget -O $FILENAME "SURL"; then
log message "Error downloading Splunk tarball."
exit 1
fi

Untar the tarball to /opt

if ! sudo tar -xzvf /tmp/$FILENAME -C /opt; then
log message "Error extracting Splunk tarball."
exit 1

fi

—--- Splunk User and Directory Setup ---

Create Splunk user and group

log message "Creating Splunk user and group..."

sudo useradd -r -m -d /opt/splunkforwarder -s /bin/bash -U splunk

--- Ownership and Permissions ---

Change ownership of Splunk directory to splunk user
log message "Setting ownership of Splunk directory..."
sudo chown -R splunk:splunk /opt/splunkforwarder

--- Splunk Configuration ---

Create necessary folders for Splunk configuration

log message "Creating Splunk configuration folders..."

su - splunk -c 'mkdir -p /opt/splunkforwarder/etc/apps/df testenvironment uf/local'

su - splunk -c 'mkdir -p /opt/splunkforwarder/etc/apps/df testenvironment uf/metadata’

Create configuration files (using heredoc syntax for clarity)
log message "Creating Splunk UF configuration files..."

cat <<EOT >> /opt/splunkforwarder/etc/apps/df testenvironment uf/metadata/local.meta
[]

access = read : [*], write : [admin]
export = system
EQOT

cat <<EQT >>
/opt/splunkforwarder/etc/apps/df testenvironment uf/local/deploymentclient.conf
[deployment-client]

disabled = false

clientName = TestUF--$FLAVOUR-S$SVERSION

phoneHomeIntervalInSecs = 60

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 65 of 83

[target-broker:deploymentServer]
targetUri = https://splunk-ds.c.terraform-demo-2024.internal:8089

EOT

cat <<EOT >> /opt/splunkforwarder/etc/apps/df testenvironment uf/local/outputs.conf
[tcpout]
defaultGroup = aio

[tcpout:aio]

server = splunk-aio.c.terraform-demo-2024.internal:9997

EOT

cat <<EOT >> /opt/splunkforwarder/etc/system/local/user-seed.conf
[user info]

USERNAME = admin

PASSWORD = lSuperSecretadmiNpassworD

EOT

Set ownership of configuration files to splunk user
log message "Setting ownership of Splunk configuration files..."

sudo

chown -R splunk:splunk /opt/splunkforwarder/etc

--- Splunk Startup and Service Management ---
Start Splunk as the splunk user

log message "Starting Splunk..."

su —

splunk -c '/opt/splunkforwarder/bin/splunk start --answer-yes —--accept-license'

Enable Splunk to start automatically at boot
log message "Enabling Splunk boot-start..."

su -
sudo
sudo
sudo

splunk -c '/opt/splunkforwarder/bin/splunk stop'

/opt/splunkforwarder/bin/splunk enable boot-start -systemd-managed 1 -user splunk
chown -R splunk:splunk /opt/splunkforwarder

systemctl start SplunkForwarder

Indicate successful completion
log message "Splunk UF is installed and started.”

Using the count meta-argument

There are three new Terraform concepts that we will need to use to be able to define the

UFs in such a way that we don't have to create a separate resource block for each of the UFs:

count, variables and provisioners.

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 66 of 83

First let's look at count.

In Terraform, the count meta-argument allows you to create multiple resources using a
single resource block. It helps in defining the number of instances of a resource that should
be created. By using count, you can efficiently manage the creation and deletion of resources
without duplicating the resource definition.

So where you could have a main.tf script that looks like this:

resource "google compute instance" "instancel" {
name = "instance-1"
machine type = "nl-standard-1"
zone = "us-centrall-a"

boot disk {
initialize params {
image = "debian-cloud/debian-9"

}

network interface {
network = "default"

}

resource "google compute instance" "instance2" ({

name "instance-2"

machine type = "nl-standard-1"
zone

"us-centrall-a"

boot disk {
initialize params {
image = "debian-cloud/debian-9"

}

network interface {
network = "default"

}

resource "google compute instance" "instance3" {
name = "instance-3"
machine type = "nl-standard-1"
zone = "us-centrall-a"

boot disk {
initialize params {

“§ Discovered

aiin Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 67 of 83

)

image = "debian-cloud/debian-9"

network interface {
network = "default"

resource "google compute instance" "instanced" {
name = "instance-4"
machine type = "nl-standard-1"
zone = "us-centrall-a"

boot disk {
initialize params {
image = "debian-cloud/debian-9"

network interface {
network = "default"

}

With count, you can achieve the same output using a single resource block.

resource "google compute instance" "instances" {
count =4
name = "instance-${count.index}"
machine type = "nl-standard-1"
zone = "us-centrall-a"
boot disk {

initialize params {
image = "debian-cloud/debian-9"

network interface {
network = "default"

}

Note: in the example above, the name field uses ${count.index} to generate unique names
like instance-0, instance-1, etc. count.index is a special variable that is available when using
count on a resource. The count.index starts at 0 and increments by 1 for each instance
created. If you wanted to start at 1, you could use ${count.index + 1}

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 68 of 83

So, to start our configuration for the Splunk UFs, we are going to create a resource block of
type google_compute_instance with an identifier of splunk_ufs, we are setting the project,
zone, machine_type and boot disk parameters, all similar to what we have done before. I am
intentionally not putting in the startup script or network blocks at this point, more about

those later.
resource "google compute instance" "instances" {
count =5
project = "terraform-demo-2024"
name = "uf-${count.index}"
machine type = "e2-small"
zone = "us-centrall-a"
boot disk {
initialize params {
size = 20
type = var.type
image = var.uf image[count.index]
}
}
metadata = {
ssh-keys = "darren:${file("~/.ssh/id rsa.pub")}"
}
tags = ["splunk", "splunk-uf", "env-test"]

Using Variables to parameterize infrastructure

Terraform also has the concept of variables. In Terraform, variables are a way to
parameterize and configure your infrastructure. They allow you to abstract hard-coded
values and make your configurations more flexible, reusable, and manageable. Variables can
hold various types of data.

The variable types supported in Terraform are:
string: a sequence of characters representing some text, like "hello".

number: a numeric value. The number type can represent both whole numbers like
15 and fractional values like 6.283185.

i Discovered
nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 69 of 83

bool: a boolean value, either true or false.

list: a sequence of values, like ["us-west-1a", "us-west-1c"]. Identify elements in a list
with consecutive whole numbers, starting with zero ie zone[0] = "us-west-1a".

map: a group of values identified by named labels, like {name = "John Smith", age =
20}.

There are three types of Variables:

Input Variables: Defined by the user and passed into Terraform configurations. They
are declared using the variable block.

Local Variables: Used to assign intermediate values within a configuration. They are
declared using a locals block.

Output Variables: Used to display information about your infrastructure after an
apply operation. They are declared using the output block.

We are going to create a new file: variables.tf, in the same directory as the main.tf file. The
variables.tf file will have one or more variable blocks defining the variable, its data type and
optionally a default value for that variable and description of the variable's purpose.

variable "variable name" {

description = "A description of the variable's purpose"
type = string
default = "default value"

Let's start creating variables for the Universal Forwarders.

| am creating a variable to identify which OS image to install on each of the forwarders. This
is a list type variable. When assigning values to a list variable a comma separated list of
values in square brackets is used (ie: ["item1", "item2", "itemN"])

variable "uf image" {
Description = "A list of images to install on each of the Universal
Forwarder hosts"

T T
u

“§ Discovered
nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 70 of 83

type = list

default = [
"rhel-cloud/rhel-8-v20240611",
"rhel-cloud/rhel-9-v20240611",
"debian-cloud/debian-12-bookworm-v20240617",
"ubuntu-os-cloud/ubuntu-2204-1ts"

And a second list to identify what flavour of Linux (Redhat or Debian) each of these
represents:

variable "uf flavour" {

description = "A list of the linux flavours on each of the Universal Forwarder
Hosts"
type = list
default = [
"rh",
"rh",
"deb",
"deb"

Another to set the Splunk UF Version to install. This variable will be a string as we are only
going to install one version in each round of testing.

variable "splunk version" {

description = "Version of Splunk universal Forwarder to install"
type = string
default = "9.2.1"

Then create a map variable to point to the download URL for each version of the Splunk
forwarder, this way if we change the splunk_version variable from 9.2.1 to 9.0.0, the script
will pull the url for the updated version.

variable "splunk download link" {
type = map
default {

"9.2.1" =
"https://download.splunk.com/products/universalforwarder/releases/9.2.1/1linux/s
plunkforwarder-9.2.1-78803f08aabb-Linux-x86 64.tgz",

"9.1.4" =
"https://download.splunk.com/products/universalforwarder/releases/9.1.4/1linux/s
plunkforwarder-9.1.4-a414fc70250e-Linux-x86 64.tgz",

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 71 of 83

"9.0.9" =
"https://download.splunk.com/products/universalforwarder/releases/9.0.9/1linux/s
plunkforwarder-9.0.9-6315942c563f-Linux-x86 64.tgz",

"g.2.9" =
"https://download.splunk.com/products/universalforwarder/releases/8.2.9/1inux/s
plunkforwarder-8.2.9-4a20fb65aa78-Linux-x86 64.tgz",

"g8.1.9" =
"https://download.splunk.com/products/universalforwarder/releases/8.1.9/1inux/s
plunkforwarder-8.1.9-al16db3287b56-Linux-x86 64.tgz",

"8.0.9" =
"https://download.splunk.com/products/universalforwarder/releases/8.0.9/1linux/s
plunkforwarder-8.0.9-153839c8b72f-Linux-x86 64.tgz"

}

And while we're at it, let's create variables for all the repeated values used throughout the
main.tf file.

—~—

variable "zone"

description =
type = string
default = "us-centrall-a"

variable "region" {

description =
type = string
default = "us-centrall"

—~—

variable "type"

description =
type = string
default = "pd-balanced"

variable "core image" {

description =
type = string
default = "ubuntu-os-cloud/ubuntu-2204-1ts"

variable "network" {

description =
type = string
default = "default"

variable "project" {
description =
type

string

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 72 of 83

default = "terraform-demo-2024"

variable "uf machine type" {

description =
type = string
default = "e2-small"

Now that all the variables are defined, let's start replacing the hard coded values in the
main.tf file with the appropriate variables.

The use of variables in the main.tf file depends on the variable type.

String variables var.variablename
List Variables var.variablenamel[index]
Map Variables var.variablename{label}

Here is what the new splunk_ufs resource block looks like with the variables in place

resource "google compute instance" "splunk ufs" {
project = var.project
name = "uf-${count.index}"

machine type var.uf machine type

zone var.zone

count =4

boot disk {
initialize params {

size = 20
type = var.type
image = var.uf image[count.index]
}
}
metadata = {
ssh-keys = "darren:${file("~/.ssh/id rsa zscaler.pub")}"
}
tags = ["splunk", "splunk-ufs", "env-test"]

“§ Discovered
F Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 73 of 83

Similar to the Splunk core instance, the network ip is being defined in a
google_compute_address block, which will have the same count as the splunk_ufs block..

resource "google compute address" "splunk uf addresses" {
count = 4
name = "splunk-uf-address-${count.index}"
project = var.project
region = var.region
address type = "EXTERNAL"

And to refer to that, let's build the network interface block, note that the nat_ip points back
to the address block we just created using the same count.index so host uf-0 will be assigned
splunk_uf_addresses[0], uf-1 assigned splunk_uf_addresses[1], etc.

network interface {
network = var.network

access_config {
network tier = "PREMIUM"
nat ip =
google compute address.splunk uf addresses[count.index].address
}
}

So here is the full set of the UF configs how they look now.

resource "google compute instance" "splunk ufs" {
project = var.project
name = "uf-${count.index}"

machine type = "e2-small"
zone = var.zone
count = 4
boot disk {
initialize params {
size = 20
type = var.type
image = var.uf image[count.index]
}
}
metadata = {
ssh-keys = "darren:${file("~/.ssh/id _rsa.pub")}"

“§ Discovered
F Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 74 of 83

network interface ({

network = var.network

access_config {
network tier = "PREMIUM"
nat ip =
google compute address.splunk uf addresses[count.index].address
}
}

tags = ["splunk", "splunk-ufs", "env-test"]

}

resource "google compute address" "splunk uf addresses" {
count =4
name = "splunk-uf-address-${count.index}"
project = var.project
region = var.region
address type = "EXTERNAL"

Using provisioners to execute actions

The last concept this post is going to add is provisioners. Provisioners are a mechanism in
Terraform to execute actions after a resource has been created or destroyed. They can be
used to:

Transfer files: The file provisioner copies files from the local machine to the remote
resource.

Execute commands locally: The local-exec provisioner runs a command on the
machine where Terraform is being executed.

Execute commands remotely: The remote-exec provisioner runs commands on the
remote resource itself (e.g., an EC2 instance) using SSH or WinRM.

The reason we need provisioners in this use case is that the metadata_startup_script that we
used to execute the splunk installation scripts on the Splunk Enterprise instances does not
have a mechanism for executing the script with command line arguments (which we need
for the UF install script).

“§ Discovered

nizn Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 75 of 83

For the UF installation use case, we will create a connection block, which defines a connection
to the host, a file provisioner to copy the script to the host and then a remote-exec
provisioner to execute the script with the command line arguments.

The connection block provides essential information about how Terraform should connect
to the remote resource. This includes details like:

e Host: The IP address or hostname of the remote machine.
e User: The username to use for authentication.
e Authentication method: SSH key, password, or other methods.

For this example, we point to the NAT IP address of the first access configuration on the first
network interface of the current resource, connect to the host using ssh, user darren, and
use the private key at ~/.ssh/id_rsa for authentication.

connection {

host = self.network interface[0].access config.0.nat ip
type = "ssh"
user = "darren"

private key = file("~/.ssh/id rsa")

Next, we need to copy the installation script to the remote host. For this the file provisioner
is used. All that is required to use a file provisioner is the path on the local machine where
the file exists and the path on the remote host where the file is to be copied.

provisioner "file" {
source = "./resources/build splunk uf.sh"
destination = "/tmp/build splunk uf.sh"

Finally, we need to use a remote-exec provisioner to set permissions on the script that we
copied to executable and then to execute the script with the required command line
arguments appropriate for this host. We are using the ${var.variablename[count.index]} to
get the correct value for each variable.

provisioner "remote-exec" {
inline = [
"sudo chmod 550 /tmp/build splunk_uf.sh",
"sudo bash /tmp/build_splunk_uf.sh -f ${var.uf_flavour[count.index}} -u
${var.splunk download link([var.splunk version]} -v S${var.splunk version}"

]

T T
u

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 76 of 83

Putting it all together

Now the full main.tf script is complete. Here is the final main.tf script including all the
resource blocks

provider "google" {
project = var.project

region = var.region
}
resource "google compute instance" "splunk core instance 1" {
project = var.project
name = "splunk-aio"
machine type = "e2-standard-8"
zone = var.zone

boot disk {
initialize params {

size = 100
type = var.type
image = var.core image

metadata startup script =
file("${path.module}/resources/build splunk core.sh")

metadata = {

ssh-keys = "darren:${file("~/.ssh/id rsa.pub")}"
network interface {

network = var.network

access_config {

network tier = "PREMIUM"
nat ip = google compute address.splunk core address 1l.address

tags = ["splunk", "splunk-core", "splunk-core-aio", "env-test"]

resource "google compute address" "splunk core address 1" {

name = "splunk-core-address-1"
project = var.project
region = var.region

address type "EXTERNAL"

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 77 of 83

resource "google compute instance" "splunk core instance 2" {

project = var.project
name = "splunk-ds"
machine type = "e2-small"
zone = var.zone

boot disk {
initialize params {

size = 20
type = var.type
image = var.core image

metadata startup script =
file("${path.module}/resources/build splunk ds.sh")

metadata = {
ssh-keys = "darren:${file("~/.ssh/id _rsa.pub")}"

network interface {
network = var.network

access_config {
network tier = "PREMIUM"
nat ip = google compute address.splunk core address 2.address

tags = ["splunk", "splunk-core", "splunk-ds", "env-test"]
}
resource "google compute address" "splunk core address 2" {
name = "splunk-core-address-2"
project = var.project
region = var.region
address type = "EXTERNAL"
}
resource "google compute firewall" "splunk core all" ({

project = var.project
name = "splunk-core-all"
network = var.network

allow {
protocol = "tcp"
ports = ["22", "8000", "8089"]

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 78 of 83

source_ranges = ["0.0.0.0/0"]

target tags = ["splunk-core"]

resource "google compute firewall" "splunk core aio" ({
project = var.project

name = "splunk-core-aio"
network = var.network
allow {
protocol = "tcp"
ports = ["9997", "8088"]
}
source _ranges = ["0.0.0.0/0"]
target tags = ["splunk-core-aio"]
}
resource "google compute instance" "splunk ufs" {
project = var.project
name = "uf-${count.index}"
machine type = "e2-small"
zone = var.zone
count = 4

boot disk {
initialize params {
size = 20
type
image = var.uf image[count.index]

var.type

metadata = {
ssh-keys = "darren:${file("~/.ssh/id rsa.pub")}"

network interface {
network = var.network

access_config {
network tier = "PREMIUM"
nat ip =
google compute address.splunk uf addresses[count.index].address

}

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 79 of 83

tags = ["splunk", "splunk-ufs", "env-test"]

connection {

host = self.network interface[0].access config.0.nat ip
type = "ssh"
user = "darren"

private key file("~/.ssh/id rsa")

provisioner "file" {
source = "./resources/build splunk uf.sh"
destination = "/tmp/build splunk uf.sh"

provisioner "remote-exec" {
inline = [
"sudo chmod 770 /tmp/build splunk uf.sh",
"sudo bash /tmp/build splunk uf.sh -f
${var.uf flavour[count.index]} -u
${var.splunk_download_link[var.splunk_version]} -v ${var.splunk_version}"

]

resource "google compute address" "splunk uf addresses" {
count = length (var.uf flavour)
name = "splunk-uf-address-${count.index}"
project = var.project
region = var.region
address type = "EXTERNAL"

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 80 of 83

Creating the full test environment

Now, let's run terraform apply to see the full test environment. For this test to be successful
we want to see:

o Splunk AIO host built and ready

o Splunk DS host built and ready

o Splunk DS internal logs forwarding to the Splunk AIO

o 4 Splunk UF hosts built, each on different OSs

o 4 Splunk UF host internal logs forwarding to the Splunk AlO

o 4 Splunk UF hosts communicating with DS

o 4 Splunk UF hosts install the TA-demo-app application from the DS

> terraform apply

Plan: 14 to add, 0 to change, 0 to destroy.

Changes to Outputs:
+ splunk core aio ip = (known after apply)
+ splunk core ds ip = (known after apply)
+ uf instance ips

(known after apply)

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value:

The plan shows 14 to add, this is 6 hosts (1x AlO, 1x DS, 4x UF), 6 addresses, and two firewall
objects. This is correct.
Apply complete! Resources: 14 added, 0 changed, 0 destroyed.

Outputs:

splunk core aio ip = "35.202.2.168"
splunk core ds ip = "34.28.216.53"
uf instance ips = "34.67.185.116,34.134.121.190,34.41.220.64,35.184.192.153"

The full build took 8 minutes to run. Let's log into the AIO, run some searches and see if our
tests are complete.

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 81 of 83

index=_internal | stats count by host Last 24 hours » n

+ 33,277 events (7/31/24 2:00:00.000 PM to 8/1/24 2:43:12. 000 PM) No Event Sampling = Job - ,«) & 4+ * Smart Mode +
Events Patterns Statistics (6) Visualization

20 PerPage » # Format Preview v

host < i count =
splunk-aic 10655
splunk-ds 7218
uf-o 1991
uf-1 2090
uf-2 3359
uf-3 7964

All 6 hosts are forwarding internal logs, let's check for deployment server communication:

index=_internal phonehome connection status=200 Last 24 hours * n
r ri "\/services\/broker\/phonehome’/connection_(?<client_ip>\d+\ . \d+\.\d+\ . \d+)_(?<client_port>\d+)_(7<client_host>[*_1+)"

client_ip client_port client_host]

+ 294 events (7/31/24 2:00:00.000 PM to 8/1/24 2:53:21.000 PM) No Event Sampling Job + Il . + * Smart Mode «
Events Patterns Statistics (4) Visualization

20 Per Page v ~ Format Preview v

client_ip = s client_port = .~ client_host = s count = .
10.128.0.21 8089 uf-3.c.terraform-demo-2824. internal 56
10.128.0.23 8089 uf-@.c.terraform-demo-2024.internal 30
10.128.0.25 8089 uf-1.c.terraform-demo-2024.internal 28
10.128.0.26 8089 uf-2.c.terraform-demo-2024.internal 28

All four UFs checked into the Deployment server, now let's check for the installation of the
TA-demo_app

inde: nternal host="splunk-ds" action=install Last 24 hours v n
s values(app) apps values(result) result ip
v 4 events (7/31/24 3:00:00.000 PM to 8/1/24 3:38:11.000 PM) No Event Sampling v Jobw s & 4 8 Verbose Mode v
Events (4) Patterns Statistics (4) Visualization
20PerPagev ./ F Preview v
ips # apps 3 7 results 74
10.128.0.21 ta-demo_app: 0Ok
10.128.0.23 ta-demo_app: ok
10.128.0.25 0k
10.128.0.26 ta-demo_app: Ok

Success, all tests are passed.

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved. Page 82 of 83

Wrap Up

In this whitepaper we provided you with an introduction to terraform and have successfully
created Terraform code to build a fully automated Splunk test environment. Thanks for
reading!

Terraform Professional Services

Discovered Intelligence offers comprehensive professional service offerings to ensure your
success with Terraform. Let us help you improve the speed of infrastructure deployment,
enable agility and automate complex infrastructure through Infrastructure as Code (laC) with
Terraform.

Our specialized Terraform Professional Services can be viewed at:
https://DiscoveredIintelligence.com/terraform-professional-services

Our professional services offerings include:
e Terraform Implementation
e Infrastructure Migration Using Terraform
e Implementing Zero Trust Architectures
e Terraform Operational Assessment

Discovered
Intelligence

© 2024 Discovered Intelligence Inc. All rights reserved.

Page 83 of 83

https://discoveredintelligence.com/terraform-professional-services

